Learn More
The trans-10,cis-12 isomer of conjugated linoleic acid (CLA) has been shown to reduce body fat gain in mice. However, the underlying molecular mechanism is not well characterized. Here we report evidence that trans-10,cis-12 (t10c12) CLA inhibits preadipocyte differentiation. Treating differentiating 3T3-L1 preadipocytes with t10c12 CLA and conjugated(More)
Conjugated linoleic acid (CLA) has drawn significant attention in the last two decades for its variety of biologically beneficial effects. CLA reduces body fat, cardiovascular diseases and cancer, and modulates immune and inflammatory responses as well as improves bone mass. It has been suggested that the overall effects of CLA are the results of(More)
Although many food components are reportedly beneficial to body-weight management, lack of understanding of molecular mechanisms and their function in overall adiposity under physiological conditions hinders successful and safe development of antiobesity functional foods. A positive energy balance resulting from an increase in food intake, a reduced energy(More)
The supplementation of conjugated linoleic acid (CLA) has been shown to improve endurance by enhancing fat oxidation during exercise in rodents and humans. This study was designed to investigate the isomer-specific effects of CLA on endurance capacity and energy metabolism in mice during exercise. Male 129Sv/J mice were divided into three dietary groups and(More)
Conjugated linoleic acid (CLA) and conjugated nonadecadienoic acid (CNA) have been previously shown to effectively reduce body fat. However, it is not clear if these effects persist with extended feeding, including potential mechanisms of increased energy expenditure. Thus the current investigation was conducted to determine the influence of dietary(More)
The elongated form of conjugated linoleic acid (CLA), conjugated eicosadienoic acid (CEA, conj. 20:2delta(c11,t13/t12,c14)), was generated from CLA by liver microsomal fractions. Subsequent testing showed that dietary CEA significantly reduced body fat, and increased lean mass similar to CLA when compared to controls. CEA also decreased lipoprotein lipase(More)
The objective of this study was to evaluate the anti-aging potential and skin safety of red ginseng (RG) and fermented red ginseng (FRG) using Lactobacillus brevis for use as cosmetic ingredients. Concentrations of uronic acid, polyphenols, and flavonoids, and antioxidant activities were greater in FRG compared to RG. The contents of total ginsenosides were(More)
Conjugated linoleic acid (CLA) reduces body fat in part by inhibiting the activity of heparin-releasable lipoprotein lipase (HR-LPL) activity in adipocytes, an effect that is induced by the trans-10,cis-12 CLA isomer. In this study we used a series of compounds that are structurally related to CLA (i.e., CLA cognates) to investigate the structural basis for(More)
Conjugated linoleic acid (CLA) has shown a wide range of biologically beneficial effects; reduction of incidence and severity of animal carcinogenesis, reduction of the adverse effects of immune stimulation, reduction of severity of atherosclerosis, growth promotion in young rats, and modulation of stearoyl-CoA desaturase (SCD). One of the most interesting(More)
Conjugated linoleic acid (CLA) has shown a variety of biologically beneficial effects. Dietary CLA inhibits eddosteal bone resorption, increases endocortical bone formation, and modulates the action and expression of cyclooxygenase (COX) enzyme, thereby decreasing prostaglandin-dependent bone resorption. CLA also enhances calcium absorption and may improve(More)