Yoni Kasten

Learn More
Computing the epipolar geometry between cameras with very different viewpoints is often problematic as matching points are hard to find. In these cases, it has been proposed to use information from dynamic objects in the scene for suggesting point and line correspondences. We propose a speed up of about two orders of magnitude, as well as an increase in(More)
Computing the epipolar geometry between cameras with very different viewpoints is often very difficult. The appearance of objects can vary greatly, and it is difficult to find corresponding feature points. Prior methods searched for corresponding epipolar lines using points on the convex hull of the silhouette of a single moving object. These methods fail(More)
Computing the epipolar geometry between cameras with very different viewpoints is often problematic as matching points are hard to find. In these cases, it has been proposed to use information from dynamic objects in the scene for suggesting point and line correspondences. We propose a speed up of about two orders of magnitude, as well as an increase in(More)
  • 1