Yongwook Choi

Learn More
As next-generation sequencing projects generate massive genome-wide sequence variation data, bioinformatics tools are being developed to provide computational predictions on the functional effects of sequence variations and narrow down the search of casual variants for disease phenotypes. Different classes of sequence variations at the nucleotide level are(More)
Information theory traditionally deals with “conventional data,” be it textual data, image, or video data. However, databases of various sorts have come into existence in recent years for storing “unconventional data” including biological data, social data, web data, topographical maps, and medical data. In compressing such data,(More)
UNLABELLED We present a web server to predict the functional effect of single or multiple amino acid substitutions, insertions and deletions using the prediction tool PROVEAN. The server provides rapid analysis of protein variants from any organisms, and also supports high-throughput analysis for human and mouse variants at both the genomic and protein(More)
Recently we have developed a new algorithm, PROVEAN (<u>Pro</u>tein <u>V</u>ariation <u>E</u>ffect <u>An</u>alyzer), for predicting the functional effect of protein sequence variations, including single amino acid substitutions and small insertions and deletions [2]. The prediction is based on the change,(More)
Carbon dioxide uptake and water vapour release in plants occur through stomata, which are formed by guard cells. These cells respond to light intensity, CO2 and water availability, and plant hormones. The predicted increase in the atmospheric concentration of CO2 is expected to have a profound effect on our ecosystem. However, many aspects of CO2-dependent(More)
Infections by pan-drug resistant Acinetobacter baumannii plague military and civilian healthcare systems. Previous A. baumannii pan-genomic studies used modest sample sizes of low diversity and comparisons to a single reference genome, limiting our understanding of gene order and content. A consensus representation of multiple genomes will provide a better(More)
Chronic inflammation is one of the main causes of cancer, yet the molecular mechanism underlying this effect is not fully understood. In this study, we identified FAT10 as a potential target gene of STAT3, the expression of which is synergistically induced by NFκB co-stimulation. STAT3 binding stabilizes NFκB on the FAT10 promoter and leads to maximum(More)
Maize is a global crop and a powerful system among grain crops for genetic and genomic studies. However, the development of novel biological tools and resources to aid in the functional identification of gene sequences is greatly needed. Towards this goal, we have developed a collection of maize marker lines for studying native gene expression in specific(More)
BACKGROUND & AIMS The intestinal epithelium consists of EphB2-positive proliferative basal cryptic cells and EphrinB1-positive, postmitotic differentiated cells. We investigated the effects of Notch signaling on formation of the EphB2-EphrinB1 boundary using mouse and tissue culture models. METHODS We created mice in which Mind bomb-1 (Mib1), an essential(More)
The comprehensive identification of functional transcription factor binding sites (TFBSs) is an important step in understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach, STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner, which(More)