Learn More
This paper proposes a simple and effective approach to improve the accuracy of multiple sequence alignment. We use a natural measure to estimate the similarity of the input sequences, and based on this measure, we align the input sequences differently. For example, for inputs with high similarity, we consider the whole sequences and align them globally,(More)
This paper describes a new MSA tool called PnpProbs, which constructs better multiple sequence alignments by better handling of guide trees. It classifies sequences into two types: normally related and distantly related. For normally related sequences, it uses an adaptive approach to construct the guide tree needed for progressive alignment; it first(More)
Progressive sequence alignment is one of the most commonly used method for multiple sequence alignment. Roughly speaking, the method first builds a guide tree, and then aligns the sequences progressively according to the topology of the tree. It is believed that guide trees are very important to progressive alignment; a better guide tree will give an(More)
  • 1