Learn More
A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR(More)
MyD88 KO (knockout) mice are exquisitely sensitive to CNS (central nervous system) infection with Staphylococcus aureus, a common aetiological agent of brain abscess, exhibiting global defects in innate immunity and exacerbated tissue damage. However, since brain abscesses are typified by the involvement of both activated CNS-resident and infiltrating(More)
Caloric restriction (CR) and down-regulation of the insulin/IGF pathway are the most robust interventions known to increase longevity in lower organisms. However, little is known about the molecular adaptations induced by CR in humans. Here, we report that long-term CR in humans inhibits the IGF-1/insulin pathway in skeletal muscle, a key metabolic tissue.(More)
The long noncoding MALAT1 RNA is upregulated in cancer tissues and its elevated expression is associated with hyper-proliferation, but the underlying mechanism is poorly understood. We demonstrate that MALAT1 levels are regulated during normal cell cycle progression. Genome-wide transcriptome analyses in normal human diploid fibroblasts reveal that MALAT1(More)
Platelet-derived growth factor CC (PDGF-CC) is the third member of the PDGF family discovered after more than two decades of studies on the original members of the family, PDGF-AA and PDGF-BB. The biological function of PDGF-CC remains largely to be explored. We report a novel finding that PDGF-CC is a potent neuroprotective factor that acts by modulating(More)
Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age-related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination,(More)
Rapamycin was found to increase (11% to 16%) the lifespan of male and female C57BL/6J mice most likely by reducing the increase in the hazard for mortality (i.e., the rate of aging) term in the Gompertz mortality analysis. To identify the pathways that could be responsible for rapamycin's longevity effect, we analyzed the transcriptome of liver from(More)
Immune impairment and high circulating level of pro-inflammatory cytokines are landmarks of human aging. However, the molecular basis of immune dys-regulation and the source of inflammatory markers remain unclear. Here we demonstrate that in the absence of overt cell stimulation gene expression mediated by the transcription factor NF-κB is higher in(More)
Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4-dinitrophenol(More)
Approximately 35 million people worldwide suffer from Alzheimer's disease (AD). Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Aβ) oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several(More)