Learn More
Using single-molecule optical-trapping techniques, we examined the force-induced dynamic behavior of a single nucleosome core particle. Our experiments using the DNA construct containing the 601 nucleosome-positioning sequence revealed that the nucleosome unravels in at least two major stages. The first stage, which we attributed to the unraveling of the(More)
DNA cyclization is potentially the most powerful approach for systematic quantitation of sequence-dependent DNA bending and flexibility. We extend the statistical mechanics of the homogeneous DNA circle to a model that considers discrete basepairs, thus allowing for inhomogeneity, and apply the model to analysis of DNA cyclization. The theory starts from an(More)
ATP-dependent chromatin-remodeling complexes (remodelers) modulate gene transcription by regulating the accessibility of highly packaged genomic DNA. However, the molecular mechanisms involved at the nucleosomal level in this process remain controversial. Here, we monitor the real-time activity of single ySWI/SNF or RSC complexes on single, stretched(More)
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are evolutionarily conserved machines that couple their folding/assembly to membrane fusion. However, it is unclear how these processes are regulated and function. To determine these mechanisms, we characterized the folding energy and kinetics of four representative SNARE(More)
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we(More)
Chromatin remodeling complexes (remodelers) are large, multisubunit macromolecular assemblies that use ATP hydrolysis to alter the structure and positioning of nucleosomes. The mechanisms proposed for remodeler action on nucleosomes are diverse, and require structural evaluation and insights. Previous reconstructions of remodelers using electron microscopy(More)
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins drive membrane fusion by assembling into a four-helix bundle in a zippering process. Here, we used optical tweezers to observe in a cell-free reconstitution experiment in real time a long-sought SNARE assembly intermediate in which only the membrane-distal amino-terminal(More)
ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to reposition and reconfigure nucleosomes. Despite their diverse functions, all remodellers share highly conserved ATPase domains, many shown to translocate DNA. Understanding remodelling requires biophysical knowledge of the DNA translocation process: how the ATPase moves DNA(More)
Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or(More)
Recognition of DNA by proteins relies on direct interactions with specific DNA-functional groups, along with indirect effects that reflect variable energetics in the response of DNA sequences to twisting and bending distortions induced by proteins. Predicting indirect readout requires knowledge of the variations in DNA curvature and flexibility in the(More)