Xingquan Zhao36
Xiaosong Gu27
36Xingquan Zhao
27Xiaosong Gu
Learn More
MicroRNAs (miRNAs) are a novel class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Here we report early alterations of miRNAs expression following rat sciatic nerve injury using microarray analysis. We harvested dorsal root ganglia (DRG) tissues and identified 19 miRNAs that showed significant changes at four(More)
Unlike the central nervous system, peripheral nerves can regenerate when damaged. MicroRNA (miRNA) is a novel class of small, non-coding RNA that regulates gene expression at the post-transcriptional level. Here, we report regular alterations of miRNA expression following rat sciatic nerve injury using deep sequencing. We harvested dorsal root ganglia(More)
Metformin acts as an energy regulator by activating 5′-adenosine monophosphate-activated protein kinase (AMPK), which is a key player in the regulation of energy homeostasis, but it is uncertain whether AMPK is its direct target. This study aims to investigate the possible interaction between metformin and AMPK. First, we verified that metformin can promote(More)
OBJECTIVES In contrast with disorders of comprehension and spontaneous expression, conduction aphasia is characterized by poor repetition, which is a hallmark of the syndrome. There are many theories on the repetition impairment of conduction aphasia. The disconnection theory suggests that a damaged in the arcuate fasciculus, which connects Broca's and(More)
Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-α and REV-ERB-β have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic(More)
T-helper cells that produce interleukin-17 (T(H)17 cells) are a recently identified CD4(+) T-cell subset with characterized pathological roles in autoimmune diseases. The nuclear receptors retinoic-acid-receptor-related orphan receptors α and γt (RORα and RORγt, respectively) have indispensible roles in the development of this cell type. Here we present(More)
Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic(More)
Dorsal root ganglia (DRG) neurons spontaneously undergo neurite growth after nerve injury. MicroRNAs (miRNAs), as small, non-coding RNAs, negatively regulate gene expression in a variety of biological processes. The roles of miRNAs in the regulation of responses of DRG neurons to injury stimuli, however, are not fully understood. Here, microarray analysis(More)
The vitamin D receptor (VDR) functions as an obligate heterodimer in complex with the retinoid X receptor (RXR). These nuclear receptors are multidomain proteins, and it is unclear how various domains interact with one another within the nuclear receptor heterodimer. Here, we show that binding of intact heterodimer to DNA alters the receptor dynamics in(More)
Quantitative structure-activity relationships (QSAR) methods are urgently needed for predicting ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties to select lead compounds for optimization at the early stage of drug discovery, and to screen drug candidates for clinical trials. Use of suitable QSAR models ultimately results in(More)