Learn More
The goal in this paper is to find closed form solutions for linear recurrence equations, by transforming an input equation <i>L</i> to an equation <i>L</i><sub><i>s</i></sub> with known solutions. The main problem is how to find a solved equation <i>L</i><sub><i>s</i></sub> to which <i>L</i> can be reduced. We solve this problem by computing local data at(More)
In this paper we show how to find a closed form solution for third order difference operators in terms of solutions of second order operators. This work is an extension of previous results on finding closed form solutions of recurrence equations and a counterpart to existing results on differential equations. As motivation and application for this work, we(More)
The software is an implementation of the algorithms in [1], [2], and [3]. The main algorithm from [3] is implemented with additional base equations beyond what appear in [3] and is incorporated into [4]. Common to each algorithm is a transformation from a base equation to the input using transformations that preserve order and homogeneity (referred to as(More)
We will present an implementation of several algorithms for solving second order linear recurrence relations. The algorithms are described in two papers accepted at ISSAC 2010. Our implementation can find Liouvillian solutions, as well as solutions written in terms of values of special functions such as the 2F1 hypergeometric function, Bessel, Whittaker,(More)
  • 1