Yonggang Meng

Learn More
Gecko-inspired surfaces are smart dry adhesive surfaces that have attracted much attention because of their wide range of potential applications. However, strong frictional force, rather than adhesive force, is frequently targeted in most of research in this area. In this study, the interfacial adhesive and frictional properties of a gecko-inspired(More)
By shearing electrorheological (ER) fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (<1 s(-1)) and a high critical electric field strength (>100 V/mm), which can be characterized by a critical apparent viscosity. Shear thickening and electrostatic particle interaction-induced(More)
A structure parameter, Sn = η(c)γ/τ(E), is proposed to represent the increase of effective viscosity due to the introduction of particles into a viscous liquid and to analyze the shear behavior of electrorheological (ER) fluids. Sn can divide the shear curves of ER fluids, τ/E(2) versus Sn, into three regimes, with two critical values Sn(c) of about 10(-4)(More)
Despite successful fabrication of gecko-inspired fibrillar surfaces with strong adhesion forces, how to achieve an easy-removal property becomes a major concern that may restrict the wide applications of these bio-inspired surfaces. Research on how geckos detach rapidly has inspired the design of novel adhesive surfaces with strong and reversible adhesion(More)
Adjustable zero phase delay and equiphase-control are demonstrated by Q. Zhao and co-workers in single and multilayer dielectric particle arrays with high index and low loss. As shown on page 6187, the polarization-independent near-zero permeability is the origin of the wave-control near the first Mie magnetic resonance. The proposed design paves the way(More)
In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem.(More)
Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been(More)