Yongchao Tian

Learn More
Various sensors have been used to obtain the canopy spectral reflectance for monitoring above-ground plant nitrogen (N) uptake in winter wheat. Comparison and intercalibration of spectral reflectance and vegetation indices derived from different sensors are important for multi-sensor data fusion and utilization. In this study, the spectral reflectance and(More)
The rapid and non-destructive monitoring of the canopy leaf nitrogen concentration (LNC) in crops is important for precise nitrogen (N) management. Nowadays, there is an urgent need to identify next-generation bio-physical variable retrieval algorithms that can be incorporated into an operational processing chain for hyperspectral satellite missions. We(More)
Modern big data workflows, found in e.g., machine learning use cases, often involve iterations of cycles of batch analytics and interactive analytics on temporary data. Whereas batch analytics solutions for large volumes of raw data are well established (e.g., Hadoop, MapReduce), state-of-the-art interactive analytics solutions (e.g., distributed shared(More)
Canopy structural parameters and light radiation are important for evaluating the light use efficiency and grain yield of crops. Their spatial variation within canopies and temporal variation over growth stages could be simulated using dynamic models with strong application and predictability. Based on an optimized canopy structure vertical distribution(More)
The Soil Plant Analysis Development (SPAD) chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in(More)
In this paper we address the problem of rule-based stream data cleaning, which sets stringent requirements on latency, rule dynamics and ability to cope with the unbounded nature of data streams. We design a system, called Bleach, which achieves real-time violation detection and data repair on a dirty data stream. Bleach relies on efficient, compact and(More)
As data sets grow in size, analytics applications struggle to get instant insight into large datasets. Modern applications involve heavy batch processing jobs over large volumes of data and at the same time require efficient ad-hoc interactive analytics on temporary data. Existing solutions, however, typically focus on one of these two aspects, largely(More)