Yongchao Tian

Learn More
Various sensors have been used to obtain the canopy spectral reflectance for monitoring above-ground plant nitrogen (N) uptake in winter wheat. Comparison and intercalibration of spectral reflectance and vegetation indices derived from different sensors are important for multi-sensor data fusion and utilization. In this study, the spectral reflectance and(More)
The rapid and non-destructive monitoring of the canopy leaf nitrogen concentration (LNC) in crops is important for precise nitrogen (N) management. Nowadays, there is an urgent need to identify next-generation bio-physical variable retrieval algorithms that can be incorporated into an operational processing chain for hyperspectral satellite missions. We(More)
Variations in the water and soil background in the signal path can cause variations in canopy spectral reflectance, which leads to uncertainty in estimating the canopy nitrogen (N) status. The primary objective of this study was to explore the optimum vegetation indices that were highly correlated with canopy leaf N concentration (LNC) but less influenced(More)
Modern big data workflows, found in e.g., machine learning use cases, often involve iterations of cycles of batch analytics and interactive analytics on temporary data. Whereas batch analytics solutions for large volumes of raw data are well established (e.g., Hadoop, MapReduce), state-of-the-art interactive analytics solutions (e.g., distributed shared(More)
Personal Cloud services, such as Dropbox or Box, have been widely adopted by users. Unfortunately, very little is known about the internal operation and general characteristics of Personal Clouds since they are proprietary services. In this paper, we focus on understanding the nature of Personal Clouds by presenting the <i>internal structure</i> and a(More)
Canopy structural parameters and light radiation are important for evaluating the light use efficiency and grain yield of crops. Their spatial variation within canopies and temporal variation over growth stages could be simulated using dynamic models with strong application and predictability. Based on an optimized canopy structure vertical distribution(More)