Learn More
The eating and cooking qualities of rice grains are the major determinants of consumer preference and, consequently, the economic value of a specific rice variety. These two qualities are largely determined by the physicochemical properties of the starch, i.e. the starch composition, of the rice grain. In our study, we determined the genetic factors(More)
To facilitate genetic research, we constructed two linkage maps by employing two F₂ populations derived from rice inter-subspecific crosses, japonica Tainung 67 (TNG67)/indica Taichung Sen 10 (TCS10) and japonica TNG67/indica Taichung Sen 17 (TCS17). We established linkage map lengths of 1481.6 cM and 1267.4 cM with average intervals of 13.8 cM and 14.4 cM(More)
Rice is a major food source for much of the world, and expanding our knowledge of genes conferring specific rice grain attributes will benefit both farmer and consumer. Here we present novel dull grain mutants with a low amylose content (AC) derived from mutagenesis of Oryza sativa, ssp. japonica cv. Taikeng 8 (TK8). Positional cloning of the gene(More)
The study of genetic diversity in different Jatropha curcas L. accessions cultivated in Taiwan comprises a necessary first step in germplasm evaluation towards improving this plant species. Genetic variations of 78 Jatropha curcas L. accessions representing origin of eight countries, cultivated in two locations in Taiwan were determined using inter simple(More)
In the present article, the method of high pressure microwave digestion and hydride generation atomic fluorescence spectroscopy (HG-AFS) was used for the determination of total arsenic and mercury in fucoidans, and the detecting conditions were optimized, including instrument working parameters, such as atomic temperature, lamp current, high voltage of PMT(More)
Anthocyanin accumulates in many plant tissues or organs, in rice for example leading to red, purple red and purple phenotypes for protection from damage by biotic and abiotic stresses and for reproduction. Purple leaf, leaf sheath, stigma, pericarp, and apiculus are common in wild rice and landraces and occasionally found in modern cultivars. No gene(More)
Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an(More)
  • 1