Learn More
Transfer RNA nucleotidyltransferases (CCA-adding enzymes) are responsible for the maturation or repair of the functional 3' end of tRNAs by means of the addition of the essential nucleotides CCA. However, it is unclear how tRNA nucleotidyltransferases polymerize CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template. Here we(More)
To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein(More)
CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five(More)
CCA-adding enzymes catalyze the addition of CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template and have been divided into two classes based on their amino acid sequences. We have determined the crystal structures of a class I CCA-adding enzyme from Archeoglobus fulgidus (AfCCA) and its complexes with ATP, CTP, or UTP. Although(More)
The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction(More)
In yeast, the whole metabolic pathway for making 16- and 18-carbon fatty acids is carried out by fatty acid synthase, a 2.6 megadalton molecular-weight macromolecular assembly containing six copies of all eight catalytic centers. We have determined its crystal structure, which illuminates how this enzyme is initially activated and then carries out multiple(More)
CCA-adding enzymes polymerize CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template. The 3.0 A resolution crystal structures of the CCA-adding enzyme from Bacillus stearothermophilus and its complexes with ATP or CTP reveal a seahorse-shaped subunit consisting of four domains: head, neck, body, and tail. The head is structurally(More)
a parallel array, to produce an extended molecule with an overall superhelical architecture. This can be visualized as a spiral staircase in which the individual TPR and Biochemistry motifs are the steps. Precisely how the TPR fold may mediate protein-pro-2 Howard Hughes Medical Institute 3 Department of Chemistry tein interactions was first revealed by the(More)
The structure of a synaptic intermediate of the site-specific recombinase gammadelta resolvase covalently linked through Ser10 to two cleaved duplex DNAs has been determined at 3.4 angstrom resolution. This resolvase, activated for recombination by mutations, forms a tetramer whose structure is substantially changed from that of a presynaptic complex(More)
A low conversion-loss monolithic frequency doubler has been developed for D-band signal generation in 0.13-μm SiGe BiCMOS technology. The circuit uses a single-transistor topology with a novel grounded-shielding structure, which can efficiently reduce the parasitic feedback effect between collector and base of a HBT to achieve frequency(More)