Learn More
Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological(More)
The roles of many sigma factors are unclear in regulatory mechanism of secondary metabolism in Streptomyces. Here, we report the regulation network of a group 3 sigma factor, WhiGch, from a natamycin industrial strain Streptomyces chattanoogensis L10. WhiGch regulates the growth and morphological differentiation of S. chattanoogensis L10. The whiG ch(More)
Streptomyces is a group of soil bacteria of medicinal, economic, ecological, and industrial importance. It is renowned for its complex biology in gene regulation, antibiotic production, morphological differentiation, and stress response. In this review, we provide an overview of the recent advances in Streptomyces biology inspired by -omics based high(More)
We used conventional methods to investigate the mechanism by which Acidithiobacillus ferrooxidans colonizes a solid surface by assessing pili-mediated sliding, twitching motility, and adherence. A. ferrooxidans slided to form circular oxidized zones around each colony. This suggested that slide motility occurs through pili or flagella, though A.(More)
The general secretion (Sec) pathway plays a prominent role in bacterial protein export, and the accessory component SecDF has been shown to improve transportation efficiency. Inspection of Streptomyces coelicolor genome reveals the unexpected presence of two different forms of secDF homologous genes: one in fused form (secDF) and the other in separated form(More)
Quorum sensing molecular γ-butyrolactones (GBL) are widely distributed among the genus Streptomyces. Their cognate receptors have been demonstrated to control secondary metabolism and/or morphological differentiation. ScgA is responsible for the biosynthesis of GBL in Streptomyces chattanoogensis. According to the genome-wide transcriptome analysis of the(More)
FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two(More)
Streptomycetes are soil-dwelling Gram-positive bacteria that are best known as the major producers of antibiotics used in the pharmaceutical industry. The evolution of exceptionally powerful transporter systems in streptomycetes has enabled their adaptation to the complex soil environment. Our comparative genomic analyses revealed that each of the eleven(More)
Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or(More)
Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two(More)