Learn More
The second-order nonlinear optical (NLO) properties of the Cp*Co(C(2)H(5))(2)C(2)B(4)H(3)-expanded (metallo)porphyrins (Cp* = C(5)Me(5)) have been investigated by using ab inito RHF and density functional theory (DFT) methods. The investigation shows that the compound with expand porphyrin possesses remarkable large molecular hyperpolarizability β(tot)(More)
The polycyclic p-quinodimethanes are proposed to be the novel candidates of the high-performance nonlinear optical (NLO) materials because of their large third order polarizabilities (γ). We investigate the switchable NLO responses of a series of polycyclic p-quinodimethanes with redox properties by employing the density functional theory (DFT). The(More)
The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor(More)
As a kind of novel organometallic complexes, the cyclopentadienylcobalt (CpCo) linear [4]phenylene complexes (4 = number of benzene rings) display efficient switchable nonlinear optical (NLO) response when CpCo reversibly migrates along the linear [4]phenylene triggered by heating or lighting. In this paper, the second-order NLO properties for CpCo linear(More)
The electron donor-acceptor complexes, which undergo intramolecular charge transfer under external stimulus, are an emerging class of materials showing important application in nonlinear optics. Synthesizing ferrocene/fullerene complexes through face-to-face fusion would enjoy the merits of both ferrocene and fullerene due to their strong donor-acceptor(More)
Stimulated by the preparation and characterization of the isolated pentagon rule (IPR) violating chlorofullerene: C(60)Cl(8) (Nat. Mater. 2008, 7, 790-794), we have performed a systematic investigation on the structural stabilities, electronic and optical properties of the IPR-violating C(60)X(8) (X = H, F, and Cl) fullerene compounds via density functional(More)
Electronic structures and nonlinear optical properties of two highly deformed halofullerenes C(3v) C(60)F(18) and D(3d) C(60)Cl(30) have been systematically studied by means of density functional theory. The large energy gaps (3.62 and 2.61 eV) between the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) and the strong aromatic(More)
Stimulated by the recent isolation and characterization of C₅₆Cl₁₀ chlorofullerene (Tan et al., J Am Chem Soc 2008, 130, 15240), we perform a systematic study on the geometrical structures, thermochemistry, and electronic and optical properties of C₅₆X₁₀ (X = H, F, and Cl) on the basis of density functional theory (DFT). Compared with pristine C₅₆, the(More)
  • 1