Learn More
Acupuncture is an invasive procedure commonly used to relieve pain. Acupuncture is practiced worldwide, despite difficulties in reconciling its principles with evidence-based medicine. We found that adenosine, a neuromodulator with anti-nociceptive properties, was released during acupuncture in mice and that its anti-nociceptive actions required adenosine(More)
Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G-protein coupled, 12)-mediated chemotaxis of microglia processes(More)
The lowest-energy structure of thiolate-group-protected Au38(SR)24 is with ab initio computations. A unique bi-isocahedral Au23 core is predicted for the Au38(SR)24 cluster, consistent with recent experimental and theoretical confirmation of the icosahedral Au13 core for the [Au25(SR)18]- cluster. The computed optical absorption spectrum and X-ray(More)
The precise atomic structure of the recently synthesized "magic cluster" Au(20)(SR)(16) is predicted using ab initio calculations and global-minimum searches. The cluster contains a prolate Au(8) core and four level-3 extended staple motifs (-RS-Au-RS-Au-RS-Au-RS-). The simulated optical absorption spectra of the lowest-energy structures are in good(More)
A metal exchange method based upon atomically precise gold nanoclusters (NCs) as templates is devised to obtain alloy NCs including CuxAu25-x(SR)18, AgxAu25-x(SR)18, Cd1Au24(SR)18, and Hg1Au24(SR)18 via reaction of the template with metal thiolate complexes of Cu(II), Ag(I), Cd(II), and Hg(II) (as opposed to common salt precursors such as CuCl2, AgNO3,(More)
We present an ab initio investigation of structural, electronic, catalytic, and selective properties of the ligand-covered gold nanoparticle Au55(PPh3)12Cl6 and associated model clusters. The catalytic activity of the Au55(PPh3)12Cl6 nanoparticle in the presence of O2 stems from a combined effect of triphenylphosphine ligands and surface structure of the(More)
We study the catalytic capability of unsupported single-walled helical gold nanotubes Au(5,3) by using density functional theory. We use the CO oxidation as a benchmark probe to gain insights into high catalytic activity of the gold nanotubes. The CO oxidation, catalyzed by the Au(5,3) nanotube, proceeds via a two-step mechanism, CO + O2 --> CO2 +O and CO +(More)
Structural and catalytic properties of the gold alloy nanocluster Au(43)Cu(12) are investigated using a density-functional method. In contrast to the pure Au(55) nanocluster, which exhibits a low-symmetry C(1) structure, the 55-atom "crown gold" nanocluster exhibits a multishell structure, denoted by Au@Cu(12)@Au(42), with the highest icosahedral(More)
Electric field induced switching behaviors of a series of low-density omega-carboxyalkyl modified H-Si(111) and the mixed omega-carboxyalkyl/alkyl covered H-Si(111) have been simulated by using molecular dynamics (MD) simulation techniques. The external electric fields may drive surface-confined molecules to reversibly change conformations between the(More)