Learn More
De novo peptide sequencing by mass spectrometry (MS) can determine the amino acid sequence of an unknown peptide without reference to a protein database. MS-based de novo sequencing assumes special importance in focused studies of families of biologically active peptides and proteins, such as hormones, toxins, and antibodies, for which amino acid sequences(More)
Everett et al. recently reported on a statistical bias that arises in the target-decoy approach to false discovery rate estimation in two-pass proteomics search strategies as exemplified by X!Tandem. This bias can cause serious underestimation of the false discovery rate. We argue here that the "unbiased" solution proposed by Everett et al., however, is(More)
We describe algorithms for incorporating prior sequence knowledge into the candidate generation stage of de novo peptide sequencing by tandem mass spectrometry. We focus on two types of prior knowledge: homology to known sequences encoded by a regular expression or position-specific score matrix , and amino acid content encoded by a multiset of required(More)
  • 1