Yona Goldshmit

Learn More
Spinal cord injury usually results in permanent paralysis because of lack of regrowth of damaged neurons. Here we demonstrate that adult mice lacking EphA4 (-/-), a molecule essential for correct guidance of spinal cord axons during development, exhibit axonal regeneration and functional recovery after spinal cord hemisection. Anterograde and retrograde(More)
Adult zebrafish show a remarkable capacity to regenerate their spinal column after injury, an ability that stands in stark contrast to the limited repair that occurs within the mammalian CNS post-injury. The reasons for this interspecies difference in regenerative capacity remain unclear. Here we demonstrate a novel role for Fgf signaling during glial cell(More)
Suppressor of cytokine signaling (SOCS) 2 is a negative regulator of growth hormone (GH) signaling that regulates body growth postnatally and neuronal differentiation during development. SOCS2 binds to the GH receptor and inhibits GH signaling, including attenuation of STAT5 activation. Here we describe a new function and mechanism of action for SOCS2.(More)
Neural trauma, such as traumatic brain injury or stroke, results in a vigorous inflammatory response at and near the site of injury, with cytokine production by endogenous glial cells and invading immune cells. Little is known of the effect that these cytokines have on neural stem cell function. Here we examine the effects of two inflammatory cytokines,(More)
Considerable debate continues regarding thalamic inputs to the middle temporal area (MT) of the visual cortex that bypass the primary visual cortex (V1) and the role they might have in the residual visual capability following a lesion of V1. Two specific retinothalamic projections to area MT have been speculated to relay through the medial portion of the(More)
Injury to the central nervous system (CNS) usually results in very limited regeneration of lesioned axons, which are inhibited by the environment of the injury site. Factors that have been implicated in inhibition of axonal regeneration include myelin proteins, astrocytic gliosis and cell surface molecules that are involved in axon guidance during(More)
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration(More)
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in regulation of gene expression by binding to target genes. Many miRNAs were associated with the function of the central nervous system (CNS) in health and disease. Astrocytes are the CNS most abundant glia cells, providing support by maintaining homeostasis and by regulating neuronal(More)
Glial scar formation occurs in response to brain injury in mammalian models and inhibits axonal growth. Identification of molecules that may mediate reactivity of astrocytes has become a leading therapeutic goal in the field of neurotrauma. In adult rodent brain and spinal cord, many of the Eph receptors and their ephrin ligands have been demonstrated to be(More)
Factors that regulate neurite outgrowth are important in determining the wiring of the central nervous system. Here we describe that the intracellular regulator of cytokine signalling, suppressor of cytokine signalling-2 (SOCS2) and epidermal growth factor (EGF), both of which are expressed in the cortical plate during neural development, promote neurite(More)