Yolanda Pareja-Jaime

Learn More
A mutant of the root pathogen Fusarium oxysporum f. sp. lycopersici, deficient in class V chitin synthase, has been shown previously to be nonvirulent. In this study, we tested the hypothesis that the cause of its avirulence could be the elicitation of the induced plant defence response, leading to the restriction of fungal infection. Co-inoculation of(More)
Saponin detoxification enzymes from pathogenic fungi are involved in the infection process of their host plants. Fusarium oxysporum f. sp lycopersici, a tomato pathogen, produces the tomatinase enzyme Tom1, which degrades alpha-tomatine to less toxic derivates. To study the role of the tom1 gene in the virulence of F. oxysporum, we performed targeted(More)
Ca(2+) signaling is an early and necessary event in plant immunity. The tomato (Solanum lycopersicum) kinase Pto triggers localized programmed cell death (PCD) upon recognition of Pseudomonas syringae effectors AvrPto or AvrPtoB. In a virus-induced gene silencing screen in Nicotiana benthamiana, we independently identified two components of a(More)
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or(More)
Previous studies have demonstrated the essential role of morphogenetic regulation in Fusarium oxysporum pathogenesis, including processes such as cell-wall biogenesis, cell division, and differentiation of infection-like structures. We identified three F. oxysporum genes encoding predicted transcription factors showing significant identities to Magnaporthe(More)
Fernando de la Torre,a Emilio Gutiérrez-Beltrán,a Yolanda Pareja-Jaime,a Suma Chakravarthy,b Gregory B. Martin,b,c,d and Olga del Pozoa,1 a Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41092 Seville, Spain b Boyce Thompson Institute for Plant Research, Ithaca, New York 14853(More)
  • 1