Yoko Yamanishi

Learn More
This paper presents an innovative driving method for an on-chip robot actuated by permanent magnets in a microfluidic chip. A piezoelectric ceramic is applied to induce ultrasonic vibration to the microfluidic chip and the high-frequency vibration reduces the effective friction on the MMT significantly. As a result, we achieved 1.1 micrometre positioning(More)
Cell stiffness could be an index for evaluating its activity. Although various systems measuring cell stiffness have been proposed so far, they are slow for adaptively connecting to cell sorters capable of handling more than 1000 [cells/sec]. This paper proposes a new approach that can indirectly evaluate the cell stiffness by measuring the passing time for(More)
The perceptional change of fragrance of essential oils is described in relation to type of work, i.e. mental work, physical work and hearing environmental (natural) sounds. The essential oils examined in this study were ylang ylang, orange, geranium, cypress, bergamot, spearmint and juniper. In evaluating change in perception of a given aroma, a sensory(More)
Laboratory cultures of a single species of bacteria harboring the same genetic background include heterogeneous cell populations, each differing in apparent morphology and physiology, as found in natural environments. To get insights into difference in the genome expression between individual cells, we constructed various types of the cell chip for(More)
Species richness in local communities has been considered an important factor determining the success of invasion by exotic species (the biotic resistance hypothesis). However, the detailed mechanisms, especially the role of predator communities, are not well understood. We studied biotic resistance to an invasive freshwater snail, Pomacea canaliculata, at(More)
This paper describes a novel powerful noncontact actuation of a magnetically driven microtool (MMT), achieved by magnetization of the MMT and focusing of the magnetic field in a microfluidic chip for particle sorting. The following are the highlights of this study: (1) an MMT was successfully fabricated from a mixture of neodymium powder and(More)
In this paper, we discuss the design and fabrication approach to increase the success rate of single particle dispensing. Two pairs of capacitance sensors are placed in a biochip to detect the flow velocity of particles, and the air pressure is applied to eject particles by synchronizing the timing. Comprehensive design theory, which is taken into account(More)
This paper presents the high speed microrobot actuation driven by permanent magnets in a microfluidic chip. The riblet surface, which is regularly arrayed V groove reduces the fluid friction and enables stable actuation in high speed. The comprehensive analysis of fluid force, the optimum design and its fabrication were conducted and proved the friction(More)
In this paper we describe novel magnetically driven polymeric microtool for non-intrusive and no contamination experiments on a chip. The composite is formed by suspending magnetite particles (Fe<sub>3</sub>O<sub>4</sub>) in polydimethylsiloxane (PDMS). In order to obtain precise and complicated pattern of micromagnetic tools, a photolithography techniques(More)