Yoji Kobayashi

Learn More
Iridium oxide nanoparticles stabilized by a heteroleptic ruthenium tris(bipyridyl) dye were used as sensitizers in photoelectrochemical cells consisting of a nanocrystalline anatase anode and a Pt cathode. The dye coordinated the IrO(2) x nH(2)O nanoparticles through a malonate group and the porous TiO(2) electrode through phosphonate groups. Under visible(More)
The relationship between crystal quality and the properties of indium phosphide nanowires grown on silicon (111) has been studied by transmission electron microscopy, photoluminescence spectroscopy, and photoelectrochemistry. Wires with no defects and with {111} twin boundaries parallel and perpendicular to the growth direction were obtained by metalorganic(More)
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to(More)
Bulk rhombohedral Bi at ambient pressure is a well-known semimetal, and its transition to a superconductor has not been observed, at least down to 50 mK. We report that, unlike bulk rhombohedral Bi, granular Bi nanowires with well-defined rhombohedral grains of approximately 10 nm diameter, fabricated by electrochemically depositing Bi into porous(More)
Gold nanoparticles have attracted widespread interest in both materials chemistry and biomedical science because of their special electronic, magnetic, catalytic, and optical properties 1,2 For these applications, it is important to be able to control the size, shape, and dispersion of the nanoparticles on a chemically diverse range of supports. Oxides are(More)
In oxides, the substitution of non-oxide anions (F(-),S(2-),N(3-) and so on) for oxide introduces many properties, but the least commonly encountered substitution is where the hydride anion (H(-)) replaces oxygen to form an oxyhydride. Only a handful of oxyhydrides have been reported, mainly with electropositive main group elements or as layered cobalt(More)
Cation-exchangeable d(0) layered perovskites are amenable to intercalation, exfoliation, and a variety of topochemical reactions, but they lack the interesting electronic and magnetic functionalities of mixed-valent perovskites. Conversely, electronically and magnetically interesting layered perovskites lack scope in terms of interlayer chemistry. To bridge(More)
We report a novel oxyhydride SrCrO2H directly synthesized by a high-pressure high-temperature method. Powder neutron and synchrotron X-ray diffraction revealed that this compound adopts the ideal cubic perovskite structure (Pm3̄m) with O(2-)/H(-) disorder. Surprisingly, despite the non-bonding nature between Cr 3d t(2g) orbitals and the H 1s orbital, it(More)
We report the synthesis of a wide range of single-crystal spinel platelets with exposed (111) faces, lateral dimensions in the micrometer range, and thicknesses of 20–50 nm, prepared by soft chemical dehydration of well crystallized layered precursors. This method enables the synthesis of the metastable composition NiCoAlO 4 , which cannot be prepared by(More)
We have prepared the oxyhydride perovskite EuTiO(3-x)H(x) (x ≤ 0.3) by a low temperature CaH2 reduction of pyrochlore Eu2Ti2O7 and perovskite EuTiO3. The reduced EuTiO(3-x)H(x) crystallizes in the ideal cubic perovskite (Pm3̅m), where O/H anions are randomly distributed. As a result of electron doping by the aliovalent anion exchange, the resistivity of(More)