Yoichiro Matsumoto

Learn More
A new method for fluoroscopic tracking of a proximal bone fragment in femoral fracture reduction is presented. The proposed method combines 2-D and 3-D image registration from single-view fluoroscopy with tracking of the head center position of the proximal femoral fragment to improve the accuracy of fluoroscopic registration without the need for repeated(More)
Recently, lithotripsy (kidney stone treatment) using HIFU (high intensity focused ultrasound) was developed by researchers in therapeutic ultrasound field. The lithotripsy crushes kidney stones powder, therefore, do not harm to the surrounding tissues of the kidney stones. However, it is necessary to continuously emit high intensity ultrasound waves on a(More)
We propose a non-invasive ultrasound theragnostic system that tracks movement in an affected area (kidney stones, in the present study) by irradiating the area with high-intensity focused ultrasound (HIFU). In the present paper, the concept behind a novel medical support system that integrates therapy and diagnostics (theragnostics) is illustrated. The(More)
The non-invasive ultrasound theragnostic system, we propose, tracks and follows movement in an affected area —kidney stones here—, while High-Intensity Focused Ultrasound (HIFU) is irradiated onto the area. In this paper, the concept of the novel medical support system, which integrates the therapy and diagnostics, is illustrated at first.(More)
In the medical ultrasound field, microbubbles have recently been the subject of much interest. Controlling actively the effect of the microbubbles, a novel therapeutic method has been investigated. In this paper, our works on high intensity focused ultrasound (HIFU) lithotripsy with cavitating microbubbles are reviewed and the cavitation detection method to(More)
High intensity focused ultrasound (HIFU) is a promising technique for cancer treatment owing to its minimal invasiveness and safety. However, skin burn, long treatment time and incomplete ablation are main shortcomings of this method. This paper presents a novel HIFU robotic system for breast cancer treatment. The robot has 4 rotational degrees of freedom(More)