Learn More
MOTIVATION The limited availability of protein structures often restricts the functional annotation of proteins and the identification of their protein-protein interaction sites. Computational methods to identify interaction sites from protein sequences alone are, therefore, required for unraveling the functions of many proteins. This article describes a(More)
MOTIVATION All eukaryotic proteomes are characterized by a significant percentage of proteins of unknown function. Comp-utational function prediction methods are therefore essential as initial steps in the function annotation process. This article describes an annotation method (PiRaNhA) for the prediction of RNA-binding residues (RBRs) from protein(More)
Single-walled carbon nanotubes with narrow diameter-distributions were synthesized by the catalytic CVD technique using fullerene, C 60 or C 70 , as the carbon source. Fe/Co bimetal particles supported with zeolite powder were exposed to fullerene vapor in a heated quartz tube furnace. With a precise control of fullerene vapor pressure, macroscopic amounts(More)
UNLABELLED SHARP2 is a flexible web-based bioinformatics tool for predicting potential protein-protein interaction sites on protein structures. It implements a predictive algorithm that calculates multiple parameters for overlapping patches of residues on the surface of a protein. Six parameters are calculated: solvation potential, hydrophobicity,(More)
Films of vertically aligned single-walled carbon nanotubes (SWNTs) with a few μm thickness were grown by catalytic chemical vapor deposition (CVD) on quartz substrates. Low-temperature CVD from ethanol was performed by using densely mono-dispersed Co-Mo catalyst of ≈ 1.0 – 2.0 nm prepared on quartz substrates by a dip-coating method. Continuous reduction of(More)
We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply(More)
A new technique of synthesizing high-quality single-walled carbon nanotubes (SWNTs) directly on the surface of silicon and quartz substrates has been developed by means of the low-temperature catalytic CVD method using ethanol. The proposed method does not employ conventional deposition/sputtering for the mounting of catalytic metals on the substrates, but(More)
Anisotropic optical absorption properties of single-walled carbon nanotubes (SWNTs) are determined from a vertically aligned SWNT film for 0.5-6 eV. Absorption peaks at 4.5 and 5.25 eV are found to exhibit remarkable polarization dependence and have relevance to optical properties of graphite. A method for determining a nematic order parameter for an(More)
The PiRaNhA web server is a publicly available online resource that automatically predicts the location of RNA-binding residues (RBRs) in protein sequences. The goal of functional annotation of sequences in the field of RNA binding is to provide predictions of high accuracy that require only small numbers of targeted mutations for verification. The PiRaNhA(More)
An in situ optical absorbance measurement was used to study the growth dynamics of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) synthesized by chemical vapor deposition of ethanol. The growth rate of the VA-SWCNT film was found to decay exponentially from an initial maximum, resulting in an effective growth time of approximately 15 minutes.(More)