Yohsuke Tomosada

Learn More
BACKGROUND We previously showed that evaluation of anti-inflammatory activities of lactic acid bacteria in porcine intestinal epithelial (PIE) cells is useful for selecting potentially immunobiotic strains. OBJECTIVE The aims of the present study were: i) to select potentially immunomodulatory bifidobacteria that beneficially modulate the Toll-like(More)
Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of(More)
Some studies have shown that probiotics, including Lactobacillus rhamnosus CRL1505, had the potential to beneficially modulate the outcome of certain bacterial and viral respiratory infections. However, these studies did not determine the mechanism(s) by which probiotics contribute to host defense against respiratory viruses. In this work we demonstrated(More)
Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect(More)
Previously we showed that orally administered Lactobacillus rhamnosus CRL1505 beneficially regulated the balance between pro- and anti-inflammatory mediators in the lungs of poly(I:C)-challenged mice, allowing an effective inflammatory response against the TLR3/RIG-I agonist but at the same time reducing tissue damage. The aim of the present study was to(More)
Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. We aimed to gain insight into the mechanisms involved in the(More)
Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets’ immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in(More)
SCOPE Immunobiotics are known to modulate intestinal immune responses by regulating Toll-like receptor (TLR) signaling pathways, which are responsible for the induction of cytokines and chemokines in response to microbial-associated molecular patterns. However, little is known about the immunomodulatory activity of compounds or molecules from immunobiotics.(More)
Previously, a bovine intestinal epithelial cell line (BIE cells) was successfully established. This work hypothesized that BIE cells are useful in vitro model system for the study of interactions of microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) with bovine intestinal epithelial cells and for the selection of immunoregulatory lactic(More)
Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4(+)CD25(high) Foxp3(+) lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory(More)
  • 1