Yohei Takada

Learn More
BACKGROUND Primary sebaceous carcinoma of the parotid gland is extremely rare, and because of its rarity, clinicopathological characteristics and histogenesis are not fully understood. METHODS Here, we report a patient who presented with a left infra-auricular painless mass. We present the histological features and discuss possible optimal treatments(More)
We report a case of infarction of the anterior inferior cerebellar artery (AICA) with peripheral facial palsy following vertigo and acute sensorineural hearing loss. A 39-year-old female presented with vertigo and sudden hearing loss, tinnitus, and aural fullness of the right ear. An audiogram revealed a severe hearing loss at all tested frequencies in the(More)
The most common reason for sensorineural deafness is death of hair cells (HCs). Heat shock proteins (HSPs) are molecular chaperones that participate in folding, targeting, and degrading proteins. HSP expression is increased in response to various environmental stresses to protect cells from damage. Here, we tested whether viral-mediated overexpression of(More)
Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We(More)
Connexins are components of gap junctions which facilitate transfer of small molecules between cells. One member of the connexin family, Connexin 26 (Cx26), is prevalent in gap junctions in sensory epithelia of the inner ear. Mutations of GJB2, the gene encoding Cx26, cause significant hearing loss in humans. The vestibular system, however, does not usually(More)
microRNAs (miRNAs) are regulators of differentiation and development of inner ear cells. Mutations in miRNAs lead to deafness in humans and mice. Among inner ear pathologies, inflammation may lead to structural and neuronal defects and eventually to hearing loss and vestibular dysfunction. While the genetic factors of these pathways have not been defined,(More)
Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical(More)
  • 1