Learn More
Alzheimer's disease (AD) is the most common form of age-related dementia, characterized by progressive memory loss and cognitive disturbance. Mutations of presenilin 1 (PS1) and presenilin 2 (PS2) are causative factors for autosomal-dominant early-onset familial AD (FAD). Induced pluripotent stem cell (iPSC) technology can be used to model human disorders(More)
Islet-1 (Isl1) is a member of the Isl1 family of LIM-homeodomain transcription factors (LIM-HD) that is expressed in a defined subset of motor and sensory neurons during vertebrate embryogenesis. To investigate how this specific expression of isl1 is regulated, we searched for enhancers of the isl1 gene that are conserved in vertebrate evolution. Initially,(More)
Although recent reports have described multipotent, self-renewing, neural crest-derived stem cells (NCSCs), the NCSCs in various adult rodent tissues have not been well characterized or compared. Here we identified NCSCs in the bone marrow (BM), dorsal root ganglia, and whisker pad and prospectively isolated them from adult transgenic mice encoding neural(More)
Parkinson’s disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra (SN). The familial form of PD, PARK2, is caused by mutations in the parkin gene. parkin-knockout mouse models show some abnormalities, but they do not fully recapitulate the pathophysiology of human PARK2. Here, we(More)
Retinoic acid (RA) is one of the most important morphogens, and its embryonic distribution correlates with neural differentiation and positional specification in the developing central nervous system. To investigate the concentration-dependent effects of RA on neural differentiation of mouse embryonic stem cells (ES cells), we investigated the precise(More)
We evaluated the teratoma-forming propensity of secondary neurospheres (SNS) generated from 36 mouse induced pluripotent stem (iPS) cell lines derived in 11 different ways. Teratoma-formation of SNS from embryonic fibroblast–derived iPS cells was similar to that of SNS from embryonic stem (ES) cells. In contrast, SNS from iPS cells derived from different(More)
Tomohisa Seki,1,7 Shinsuke Yuasa,1,2,7 Mayumi Oda,2 Toru Egashira,1 Kojiro Yae,1 Dai Kusumoto,1 Hikari Nakata,1 Shugo Tohyama,1 Hisayuki Hashimoto,1 Masaki Kodaira,1 Yohei Okada,2,3 Hiroyuki Seimiya,4 Noemi Fusaki,5,6 Mamoru Hasegawa,5 and Keiichi Fukuda1,* 1Department of Cardiology 2Center for Integrated Medical Research 3Department of Physiology Keio(More)
Various types of induced pluripotent stem (iPS) cells have been established by different methods, and each type exhibits different biological properties. Before iPS cell-based clinical applications can be initiated, detailed evaluations of the cells, including their differentiation potentials and tumorigenic activities in different contexts, should be(More)
Once their safety is confirmed, human-induced pluripotent stem cells (hiPSCs), which do not entail ethical concerns, may become a preferred cell source for regenerative medicine. Here, we investigated the therapeutic potential of transplanting hiPSC-derived neurospheres (hiPSC-NSs) into nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice to(More)
Neural stem/progenitor cells (NS/PCs) can generate a wide variety of neural cells. However, their fates are generally restricted, depending on the time and location of NS/PC origin. Here we demonstrate that we can recapitulate the spatiotemporal regulation of central nervous system (CNS) development in vitro by using a neurosphere-based culture system of(More)