Learn More
The reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the postnatal heart, yet no single "master regulator" of direct cardiac reprogramming has been(More)
Enzymes used for passaging human pluripotent stem cells (hPSCs) digest cell surface proteins, resulting in cell damage. Moreover, cell dissociation using divalent cation-free solutions causes apoptosis. Here we report that Mg(2+) and Ca(2+) control cell-fibronectin and cell-cell binding of hPSCs, respectively, under feeder- and serum-free culture conditions(More)
Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in(More)
In this study, we investigated whether glucagon-like peptide-2 (GLP-2) had antidepressant-like effects in mice, and whether these activities were associated with monoamine systems in mice. Antidepressant-like effects were evaluated based on the immobility time in the forced-swim test. GLP-2 (1.5-6 microg/mouse, i.c.v.) significantly reduced the immobility(More)
Because mouse embryonic stem cells (mESCs) do not contribute to the formation of extraembryonic placenta when they are injected into blastocysts, it is believed that mESCs do not differentiate into trophoblast whereas human embryonic stem cells (hESCs) can express trophoblast markers when exposed to bone morphogenetic protein 4 (BMP4) in vitro. To test(More)
BACKGROUND The successful establishment of human induced pluripotent stem cells (hiPSCs) has increased the possible applications of stem cell research in biology and medicine. In particular, hiPSCs are a promising source of cells for regenerative medicine and pharmacology. However, one of the major obstacles to such uses for hiPSCs is the risk of(More)
BACKGROUND Abnormal activation of endochondral bone formation in soft tissues causes significant medical diseases associated with disability and pain. Hyperactive mutations in the bone morphogenetic protein (BMP) type 1 receptor ACVR1 lead to fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterized by progressive ossification in(More)
Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible(More)
A rapid increase in research on the relationship between histone modifications and their subsequent reactions in the nucleus has revealed that the histone modification system is complex, and robust against point mutations. The prevailing theoretical framework (the histone code hypothesis) is inadequate to explain either the complexity or robustness, making(More)
Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca(2+)]i) measurements(More)