Learn More
Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of(More)
Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat(More)
BACKGROUND Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing(More)
Emergence of the newly identified 16S rRNA methylases RmtA, RmtB, and ArmA in pathogenic gram-negative bacilli has been a growing concern. ArmA, which had been identified exclusively in Europe, was also found in several gram-negative pathogenic bacilli isolated in Japan, suggesting global dissemination of hazardous multiple aminoglycoside resistance genes.
A total of 49 unique clinical isolates of multidrug-resistant (MDR) Acinetobacter baumannii identified at a tertiary medical center in Pittsburgh, Pennsylvania, between August 2006 and September 2007 were studied for the genetic basis of their MDR phenotype. Approximately half of all A. baumannii clinical isolates identified during this period qualified as(More)
Recent EUCAST advice asserts that, with low breakpoints, susceptibility results for cephalosporins and carbapenems can be reported 'as found', even for strains with extended-spectrum β-lactamases (ESBLs) and carbapenemases. The CLSI has similar advice, but with higher ceftazidime and cefepime breakpoints than those of EUCAST. Pharmacodynamic and animal data(More)
strains producing CTX-M-2 β-lactamase were isolated from 6 (1.5%) of 396 cattle fecal samples and 2 (0.7%) of 270 surface swabs of cattle carcasses in Japan. The bla CTX-M-2 gene responsible for CTX-M-2 production was encoded on transferable plasmids, and the gene was transferred to E. coli CSH2 with a very high frequency (2 x 10-4 to 6 x 10-1 per donor(More)
Acinetobacter baumannii is emerging as an important nosocomial pathogen worldwide. We report molecular epidemiology of 65 carbapenem-nonsusceptible A. baumannii isolates identified from hospitals in New York, Pennsylvania, Florida, Missouri, Nevada, and California between 2008 and 2009. All isolates were subjected to pulsed-field gel electrophoresis (PFGE).(More)
Multidrug-resistant (MDR) Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was(More)
A disk potentiation method using carbapenems as substrates and 3-aminophenyl boronic acid as an inhibitor was evaluated for the detection of Klebsiella pneumoniae carbapenemase (KPC)-type beta-lactamases. When combined with nonsusceptibility to ertapenem, the method was easy to perform and reliably differentiated isolates producing KPC-type beta-lactamases(More)