Yogo Sakakibara

Learn More
A novel siderophore, called acinetobactin, with both catecholate and hydroxamate functional groups was isolated from low-iron cultures of Acinetobacter baumannii ATCC 19606. The structure was elucidated by chemical degradation, fast-atom bombardment mass spectrometry and 1H and 13C NMR spectroscopy. Acinetobactin was composed of ω-N-hydroxyhistamine,(More)
As part of the central core domain of the ribosome, helix 69 of 23S rRNA participates in an important intersubunit bridge and contacts several protein translation factors. Helix 69 is believed to play key roles in protein synthesis. Even though high-resolution crystal structures of the ribosome exist, the solution dynamics and roles of individual(More)
The movement of the small ribosomal subunit (30S) relative to the large ribosomal subunit (50S) during translation is widely known, but many molecular details and roles of rRNA and proteins in this process are still undefined, especially in solution models. The functional relationship of modified nucleotides to ribosome activity is one such enigma. To(More)
Helix 69 (H69) of 23S ribosomal RNA serves as a unique model system to study the impact of modified bases on RNA structure and function, and to screen potential antibiotics. H69 is located at the functionally important core domain of the bacterial ribosome, participates in key intersubunit bridge B2a interactions, and plays important roles in translation.(More)
Development of antibiotics that target new regions of functionality is a possible way to overcome antibiotic resistance. In this study, the interactions of aminoglycoside antibiotics with helix 69 of the E. coli 23S rRNA in the context of complete 70S ribosomes or the isolated 50S subunit were investigated by using chemical probing and footprinting(More)
  • 1