Yogeshvar N. Kalia

Learn More
The composition and architecture of the stratum corneum render it a formidable barrier to the topical and transdermal administration of therapeutic agents. The physicochemical constraints severely limit the number of molecules that can be considered as realistic candidates for transdermal delivery. Iontophoresis provides a mechanism to enhance the(More)
The use of skin as an alternative route for administering systemically active drugs has attracted considerable interest in recent years. However, the skin provides an excellent barrier, which limits the number of drug molecules suitable for transdermal delivery. Thus, in order to improve cutaneous delivery, it is necessary to adopt an enhancement method,(More)
Encapsulation using nanoparticulate systems is an increasingly implemented strategy in drug targeting and delivery. Such systems have also been proposed for topical administration to enhance percutaneous transport into and across the skin barrier. However, the mechanism by which such particulate formulations facilitate skin transport remains ambiguous. In(More)
The poor penetration of drugs into the skin (and, partially, the permeation across the stratum corneum) often limits the efficacy of topical formulations. Basically, skin penetration can be enhanced by the following strategies: (i) increasing drug diffusivity in the skin; (ii) increasing drug solubility in the skin, and/or (iii) increasing the degree of(More)
The objectives of this study were to investigate a novel laser microporation technology ( P.L.E.A.S.E. Painless Laser Epidermal System) and to determine the effect of pore number and depth on the rate and extent of drug delivery across the skin. In addition, the micropores were visualized by confocal laser scanning microscopy and histological studies were(More)
The number of drug molecules approved by the regulatory authorities for transdermal administration is relatively modest - less than two dozen. Many other therapies might benefit from the advantages offered by the transdermal route. That they have not already done so is due to the exceptional efficacy of the stratum corneum as a diffusional barrier and its(More)
The aim of the study was (i) to investigate the feasibility of using fractional laser ablation to create micropore arrays in order to deliver proteins into and across the skin and (ii) to demonstrate how transport rates could be controlled by variation of poration and formulation conditions. Four proteins with very different structures and properties were(More)
The objective of the study was to investigate the effect of laser microporation, using P.L.E.A.S.E.® technology, on diclofenac delivery kinetics. Skin transport of diclofenac was studied from aqueous solution, propylene glycol and marketed formulations across intact and laser-porated porcine and human skins; cumulative permeation and skin deposition were(More)
Purpose. To determine whether and how encapsulation of lipophilic compounds in polymeric nanoparticles is able to improve topical delivery to the skin. Methods. The penetration of octyl methoxycinnamate (OMC; Parsol MCX), a highly lipophilic sunscreen, into and across porcine ear skin in vitro was investigated, subsequent to encapsulation in(More)
The stratum corneum forms the outermost layer of the skin and is essentially a multilamellar lipid milieu punctuated by protein-filled corneocytes that augment membrane integrity and significantly increase membrane tortuosity. The lipophilic character of the stratum corneum, coupled with its intrinsic tortuosity, ensure that it almost always provides the(More)