Yogesh Bhargava

Learn More
P2X receptors are ATP-gated nonselective cation channels. Functional receptors are assembled as homotrimers or heterotrimers of seven cloned subunits. Each subunit contains two transmembrane domains linked by a large extracellular loop that is required for agonist binding. So far, there is no direct evidence indicating whether the agonist binding site is(More)
P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the(More)
Ion channel opening and desensitization is a fundamental process in neurotransmission. The ATP-gated P2X1 receptor (P2X1R) shows rapid and long-lasting desensitization upon agonist binding. This makes the electrophysiological investigation of its desensitization process, agonist unbinding, and recovery from desensitization a challenging task. Here, we show(More)
Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T(More)
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and(More)
  • 1