Learn More
A multidimensional, finite difference numerical scheme for the freezing process of biological tissues during cryosurgery is presented, which is a modification of an earlier numerical solution for inanimate materials. The tissues are treated as nonideal materials, freezing over a temperature range and possessing temperature-dependent thermophysical(More)
This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the(More)
Cryosurgery is the destruction of undesired biological tissues by freezing. For internal organs, multiple cryoprobes are inserted into the tissue with the goal of maximizing cryoinjury within a predefined target region, while minimizing cryoinjury to the surrounding tissues. The objective of this study is to develop a computerized planning tool to determine(More)
In recent years, ice-free cryopreservation by vitrification has been demonstrated to provide superior preservation of tissues compared with conventional freezing methods. To date, this has been accomplished almost exclusively for small model systems, whereas cryopreservation of large tissue samples-of a clinically useful size-continues to be hampered by(More)
A new liquid-nitrogen-based apparatus for minimally invasive cryosurgery is presented. The cryoprobe was designed for application to breast tumors; however, it can be used for the treatment of other tumors. The cryoprobe has three major components, a cryoneedle, a thermal insulation shell, and a protective tube, which may be assembled as part of the(More)
A new experimental apparatus for temperature-controlled microscopy has been developed for the study of the temperature dependency of developmental processes in the nematode Caenorhabditis elegans. However, the application of this apparatus is rather general and can be used for a wide range of temperatures between - 10 and 90 degrees C. The new apparatus is(More)
  • Yoed Rabin
  • International journal of hyperthermia : the…
  • 2002
More than 20 years ago, it was hypothesized that intracellular hyperthermia is superior to extracellular hyperthermia. It was further hypothesized that even a single biological cell containing magnetic nanoparticles can be treated for hyperthermia by an AC magnetic field, independent of its surrounding cells. Since experimental investigation of the thermal(More)
Cryopreservation is a well-established technique for long-term storage of viable cells and tissues. However, in recent years, application of established cryobiological principles to the preservation of multicellular tissues and organs has demanded considerable attention to ways of circumventing the deleterious effects of ice and thermal stresses in bulky(More)
As a part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on fracture formation in vitrified thin films of cryoprotective agents. The current study combines experimental observations with continuum mechanics analysis. Experimental results have been developed using a new imaging(More)
As a part of an ongoing effort to develop computerized planning tools for cryosurgery, an experimental study has been conducted to verify a recently developed numerical technique for bioheat transfer simulations. Experiments were performed on gelatin solution as a phantom material, using proprietary liquid-nitrogen cryoprobes. Urethral warming was simulated(More)