Learn More
In a situation so far unique among neurotransmitter receptors, glutamate receptors share amino acid sequence similarities with the bacterial periplasmic binding proteins (PBPs). On the basis of the primary structure similarity of two bacterial periplasmic proteins (lysine/arginine/ornithine- and phosphate-binding proteins) with the chick cerebellar(More)
Over the last decade, a large body of information regarding the amino acid sequences and tertiary structures of many proteins has accumulated. Subtle similarities in sequence patterns identified between glutamate receptors and bacterial periplasmic substrate-binding proteins have suggested that structural kinship exists between these protein families. Many(More)
The chick cerebellar kainate (KA) binding protein (KBP), a member of the family of ionotropic glutamate receptors, harbours a glycine-rich (GxGxxG) motif known to be involved in the binding of ATP and GTP to kinases and G proteins respectively. Here, we report that guanine, but not adenine, nucleotides interact with KBP by inhibiting [3H]KA binding in a(More)
The nicotinic acetylcholine receptors (nAChRs) and the 5-HT3 serotonin receptor subtype belong to a superfamily of neurotransmitter-gated ion channels involved in fast synaptic communication throughout the nervous system. Their trafficking to the neuron plasmalemma, as well as their targeting to specific subcellular compartments, is critical for(More)
Ecto-protein kinases (ecto-PK), primarily of the serine/threonine kinase type, have been previously described on the surface of various normal, transformed, and tumor cells. We have found that in the presence of ATP and Mg2+, exogenously added substrates such as phosvitin and poly(Glu4-Tyr) are phosphorylated by intact K562 erythroleukemia, HL60(More)
Tissue-type transglutaminases (TGases) were recently shown to exert dual enzymatic activities; they catalyze the posttranslational modification of proteins by transamidation, and they also act as guanosine triphosphatase (GTPase). Here we show that a tissue-type TGase is expressed in rat brain astrocytes in vitro, and is induced by the(More)
Long-term consumption of tobacco by smokers causes addiction and increases the level of neuronal nicotinic acetylcholine receptors (nAChRs) in the brain, a phenomenon known as up-regulation. Here, we show that up-regulation of specific nAChR subunits takes place in white blood cells (WBCs) of smokers and mice subjected to long-term administration of(More)
The interactions of guanine nucleotides, and particularly GTP, with the [3H]-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and [3H]-kainate (KA) binding sites present on brain membranes was studied, using the ligand binding methodology and Scatchard analysis, in order to establish the competitive/non competitive nature of the interaction and(More)
Neurons regulate the propagation of chemoelectric signals throughout the nervous system by opening and closing ion channels, a process known as gating. Here, histidine-based metal-binding sites were engineered along the intrinsic pore of a chimeric Cys-loop receptor to probe state-dependent Zn(2+)-channel interactions. Patterns of Zn(2+) ion binding within(More)
Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K(+) channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form(More)