Yo-ichi Wada

Learn More
Nuclear dysfunction is a key feature of the pathology of polyglutamine (polyQ) diseases. It has been suggested that mutant polyQ proteins impair functions of nuclear factors by interacting with them directly in the nucleus. However, a systematic analysis of quantitative changes in soluble nuclear proteins in neurons expressing mutant polyQ proteins has not(More)
Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis,(More)
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear protein that interacts and colocalizes with mutant polyglutamine proteins. We previously reported that PQBP-1 transgenic mice show a late-onset motor neuron disease-like phenotype and cell death of motor neurons analogous to human neurodegeneration. To investigate the molecular mechanisms(More)
Mutations of PQBP-1 (polyglutamine binding protein-1) have been shown recently to cause human mental retardation accompanied by microcephaly at a high frequency. As a first step towards understanding the molecular basis of this developmental anomaly, we analysed developmental expression of PQBP-1 by in situ hybridization, immunohistochemistry and Western(More)
  • 1