Learn More
Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven.(More)
Cells are frequently exploited as processing components for integrated chemical systems, such as biochemical reactors and bioassay systems. By culturing vascular endothelial cells (ECs) in integrated chemical devices, vascular models have also been fabricated. Here, we utilized a thermally fused-glass microchip which is chemically and physically stable and(More)
In this study, we developed a method for fabricating a microfluidic device with integrated large-scale all-glass valves and constructed an actuator system to control each of the valves on the device. Such a microfluidic device has advantages that allow its use in various fields, including physical, chemical, and biochemical analyses and syntheses. However,(More)
Herein, a simple and effective approach is reported for the in situ generation and regeneration of a Au nanorod (AuNR) monolayer inside a glass/silica-based, closed-surface flow channel. The density of the AuNR monolayer in the flow channel can be easily modified by varying the concentration of the AuNR and the cetyltrimethylammonium bromide as well as the(More)
The field of synthetic biology aims to understand the mechanisms of biological systems by designing and constructing artificial biological systems from molecular parts. One of the ultimate goals of the approach is to develop an artificial cell that is under the control of scientists. Although the creation of a bacterial cell controlled by a chemically(More)
The geometrical confinement of small cell colonies gives differential cues to cells sitting at the periphery versus the core. To utilize this effect, for example to create spatially graded differentiation patterns of human mesenchymal stem cells (hMSCs) in vitro or to investigate underpinning mechanisms, the confinement needs to be robust for extended time(More)
In order to tackle both regional and global foot-and-mouth disease virus (FMDV) epdimics, we hereby develop a rapid microfluidic thermal lens microscopic method to screen swine type O FMDV with good efficiency. The scheme has great merits in terms of field portability, sample volume, assay time, analytical sensitivity, and test reproducibility.
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of(More)
Cone photopigments (opsins) are crucial elements of, and the first detection module in, color vision. Individual opsins have different wavelength sensitivity patterns, and the temporal and spatial expression patterns of opsins are unique and stringently regulated. Long and middle wavelength-sensitive (L/M) opsins are of the same phylogenetic type. Although(More)
  • 1