Learn More
Global warming predictions indicate that temperatures will increase by another 2-6°C by the end of this century. High temperature is a major abiotic stress limiting plant growth and productivity in many areas of the world. Switchgrass (Panicum virgatum L.) is a model herbaceous bioenergy crop, due to its rapid growth rate, reliable biomass yield, minimal(More)
Meiosis is often described as a special case of cell division since it differs from mitosis in having two nuclear divisions without an intervening S-phase. It will be of great interest to uncover what molecular mechanisms underlie these special features of meiosis. We previously reported that the tardy asynchronous meiosis (tam) mutant of Arabidopsis(More)
BACKGROUND Switchgrass (Panicum virgatum L.) is a C4 perennial grass and widely popular as an important bioenergy crop. To accelerate the pace of developing high yielding switchgrass cultivars adapted to diverse environmental niches, the generation of genomic resources for this plant is necessary. The large genome size and polyploid nature of switchgrass(More)
Molecular genetics has identified dozens of genes that regulate flower development in Arabidopsis. However, the complexity of flower development suggests that many other genes are yet to be uncovered. To identify floral genes that are expressed at low levels in the flower, we have sequenced 1587 cDNA fragments from a subtractive floral cDNA library. A total(More)
Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations.(More)
Mutations that eliminate chloroplast translation in Arabidopsis (Arabidopsis thaliana) result in embryo lethality. The stage of embryo arrest, however, can be influenced by genetic background. To identify genes responsible for improved growth in the absence of chloroplast translation, we examined seedling responses of different Arabidopsis accessions on(More)
Normal progression of genetic recombination requires timely degradation of many proteins, but little is known about the proteolytic mechanism. The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein is a component of the Skp1-Cullin-F-box-protein (SCF) ubiquitin ligases that target a variety of proteins for degradation via the 26S proteasome pathway. Previous studies(More)
In the last two decades switchgrass has received increasing attention as a promising bioenergy feedstock. Biomass is the principal trait for improvement in switchgrass breeding programs and tillering is an important component of biomass yield. Switchgrass inbred lines derived from a single parent showing vast variation in tiller number trait was used in(More)
The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support(More)
INDEHISCENT (IND) is one of the major factors of a transcriptional network regulating fruit dehiscence in Arabidopsis thaliana. However, partially owing to the lack of knowledge on the morphogenic process at the junction between the valve margin and the replum, the cellular processes regulated by IND have not been elucidated. Here we report the(More)