Yiu-Wing Mai

Learn More
Tissue scaffolds are typically designed and fabricated to match native bone properties. However, it is unclear if this would lead to the best tissue ingrowth outcome within the scaffold as neo-tissue keeps changing the stiffness of entire construct. This paper presents a numerical method to address this issue for design optimization and assessment of tissue(More)
The barrier properties of polymer-clay nanocomposites, with far less inorganic contents of layered-silicate fillers, are remarkably superior to those of neat polymers or their conventional counterparts. A simple renormalization group model is proposed to assess the influence of geometric factors (such as aspect ratio, orientation, and extent of exfoliation)(More)
For a two-dimensional piezoelectric plate, the thermoelectroelastic Green's functions for bimaterials subjected to a temperature discontinuity are presented by way of Stroh formalism. The study shows that the thermoelectroelastic Green's functions for bimaterials are composed of a particular solution and a corrective solution. All the solutions have their(More)
By a novel in situ chemical vapor deposition, activated N-doped hollow carbon-nanotube/carbon-nanofiber composites are prepared having a superhigh specific Brunauer–Emmett–Teller (BET) surface area of 1840 m(2) g(–1) and a total pore volume of 1.21 m(3) g(–1). As an anode, this material has a reversible capacity of ~1150 mAh g(–1) at 0.1 A g(–1) (0.27 C)(More)
The mechanical behavior of vertically aligned single-crystal GaAs nanowires grown on GaAs(111)B surface was investigated using in situ deformation transmission electron microscopy. Anelasticity was observed in nanowires with small diameters and the anelastic behavior was affected by the crystalline defects in the nanowires. The underlying mechanism for the(More)
This study demonstrates that large-size graphene oxide (GO) sheets can impart a tremendous positive impact on self-alignment, electrical conductivity, and mechanical properties of graphene papers. There is a remarkable, more than 3-fold improvement in electrical conductivity of the papers made from ultralarge GO sheets (with an average area of 272.2 μm(2))(More)
The dependence relation between the macroscopic effective property and the microstructure of interpenetrating multiphase composites is investigated in this paper. The effective elastic moduli of such composites cannot be calculated from conventional micromechanics methods based on EshelbyÕs tensor because an interpenetrating phase cannot be extracted as(More)