Yiu-Wing Mai

Learn More
Tissue scaffolds are typically designed and fabricated to match native bone properties. However, it is unclear if this would lead to the best tissue ingrowth outcome within the scaffold as neo-tissue keeps changing the stiffness of entire construct. This paper presents a numerical method to address this issue for design optimization and assessment of tissue(More)
The barrier properties of polymer-clay nanocomposites, with far less inorganic contents of layered-silicate fillers, are remarkably superior to those of neat polymers or their conventional counterparts. A simple renormalization group model is proposed to assess the influence of geometric factors (such as aspect ratio, orientation, and extent of exfoliation)(More)
This study demonstrates that large-size graphene oxide (GO) sheets can impart a tremendous positive impact on self-alignment, electrical conductivity, and mechanical properties of graphene papers. There is a remarkable, more than 3-fold improvement in electrical conductivity of the papers made from ultralarge GO sheets (with an average area of 272.2 μm(2))(More)
By a novel in situ chemical vapor deposition, activated N-doped hollow carbon-nanotube/carbon-nanofiber composites are prepared having a superhigh specific Brunauer–Emmett–Teller (BET) surface area of 1840 m(2) g(–1) and a total pore volume of 1.21 m(3) g(–1). As an anode, this material has a reversible capacity of ~1150 mAh g(–1) at 0.1 A g(–1) (0.27 C)(More)
For a two-dimensional piezoelectric plate, the thermoelectroelastic Green's functions for bimaterials subjected to a temperature discontinuity are presented by way of Stroh formalism. The study shows that the thermoelectroelastic Green's functions for bimaterials are composed of a particular solution and a corrective solution. All the solutions have their(More)
Quantitative mechanical testing of single-crystal GaAs nanowires was conducted using in situ deformation transmission electron microscopy. Both zinc-blende and wurtzite structured GaAs nanowires showed essentially elastic deformation until bending failure associated with buckling occurred. These nanowires fail at compressive stresses of ~5.4 GPa and 6.2(More)
The mechanical properties and structural behavior of materials under load change signifi cantly when the dimensions of the materials are reduced to microor nanoscales. For example, early studies showed that the yield strengths of micrometer-sized whiskers approach their theoretical strength values. [ 1–3 ] Uchic et al. reported that the tensile strength of(More)
Cellular-structured graphene foam (GF)/epoxy composites are prepared based on a three-step fabrication process involving infiltration of epoxy into the porous GF. The three-dimensional (3D) GF is grown on a Ni foam template via chemical vapor deposition. The 3D interconnected graphene network serves as fast channels for charge carriers, giving rise to a(More)
Poly(vinylidene fluoride) (PVDF) fibers with diameters ranging from 70 to 400 nm are produced by electrospinning and the effect of fiber size on the ferroelectric β-crystalline phase is determined. Domain switching and associated ferro-/piezo-electric properties of the electrospun PVDF fibers were also determined. The fibers showed well-defined(More)