Yitzhak Tor

Learn More
Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic(More)
This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) ( http://www.eng.uc.edu/nanomedicine/RNA2010/ ), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The(More)
The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base(More)
The lack of high RNA target selectivity displayed by aminoglycoside antibiotics results from both their electrostatically driven binding mode and their conformational adaptability. The inherent flexibility around their glycosidic bonds allows them to easily assume a variety of conformations, permitting them to structurally adapt to diverse RNA targets. This(More)
A family of extended 5-modified-6-aza-uridines was obtained via Suzuki coupling reactions with a common brominated precursor. Extending the conjugated-6-aza-uridines with substituted aryl rings increases the push-pull interactions yielding enhanced bathochromic shifts and solvatochromism compared to the parent nucleosides. For example, the methoxy(More)
Semisynthetic derivatives of the clinically useful aminoglycosides tobramycin and amikacin were prepared by selectively modifying their 6'' positions with a variety of hydrogen bond donors and acceptors. Their binding to the rRNA A-site was probed using an in vitro FRET-based assay, and their antibacterial activities against several resistant strains (e.g.,(More)
The emergence of virulent, drug-resistant bacterial strains coupled with a minimal output of new pharmaceutical agents to combat them makes this a critical time for antibacterial research. Aminoglycosides are a well-studied, highly potent class of naturally occurring antibiotics with scaffolds amenable to modification, and therefore, they provide an(More)
The fastidious behavior of T7 RNA polymerase limits the incorporation of synthetic nucleosides into RNA transcripts, particularly at or near the promoter. The practically exclusive use of GTP for transcription initiation further compounds this challenge, and reactions with GTP analogs, where the heterocyclic nucleus has been altered, have not, to our(More)
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen(More)