Learn More
Twin support vector machine (TSVM) is a novel machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems rather than a single large one. Classical TSVM is proposed for the binary classification problem. However, multi-class(More)
Twin support vector machine (TSVM) is a new machine learning algorithm, which aims at finding two nonparallel planes for each class. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems (QPPs) rather than a single large one. However, when constructing the classification plane for one class, a large number of samples(More)
This paper improves the recently proposed twin support vector regression (TSVR) by formulating it as a pair of linear programming problems instead of quadratic programming problems. The use of 1-norm distance in the linear programming TSVR as opposed to the square of the 2-norm in the quadratic programming TSVR leads to the better generalization performance(More)
As patient survival drops precipitously from early-stage cancers to late-stage and metastatic cancers, microRNAs that promote relapse and metastasis can serve as prognostic and predictive markers as well as therapeutic targets for chemoprevention. Here we show that miR-1269a promotes colorectal cancer (CRC) metastasis and forms a positive feedback loop with(More)
Twin support vector regression (TSVR) finds ϵ-insensitive up- and down-bound functions by resolving a pair of smaller-sized quadratic programming problems (QPPs) rather than a single large one as in a classical SVR, which makes its computational speed greatly improved. However the local information among samples are not exploited in TSVR. To make full use(More)