Learn More
UNLABELLED A new dedicated PET scanner, microPET, was designed and developed at the University of California, Los Angeles, for imaging small laboratory animals. The goal was to provide a compact system with superior spatial resolution at a fraction of the cost of a clinical PET scanner. METHODS The system uses fiberoptic readout of individually cut(More)
The coincidence timing resolution is a critical parameter which to a large extent determines the system performance of positron emission tomography (PET). This is particularly true for time-of-flight (TOF) PET that requires an excellent coincidence timing resolution (<<1 ns) in order to significantly improve the image quality. The intrinsic timing(More)
Akt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3(More)
UNLABELLED The most common semiquantitative method of evaluation of pulmonary lesions using 18F-FDG PET is FDG standardized uptake value (SUV). An SUV cutoff of 2.5 or greater has been used to differentiate between benign and malignant nodules. The goal of our study was to investigate the correlation between the size of pulmonary nodules and the SUV for(More)
We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the(More)
Simultaneous acquisition of positron emission tomography (PET) and magnetic resonance (MR) images using an MR-compatible PET system will obviate the need for image registration and will allow unique studies of structure and function of living organisms in one setting. Here we report on simultaneous acquisition of PET and MR images on a clinical 1.5 T system(More)
Geometrical calibration is critical to obtaining high resolution and artifact-free reconstructed image for SPECT and CT systems. Most published calibration methods use analytical approach to determine the uniqueness condition for a specific calibration problem, and the calibration accuracy is often evaluated through empirical studies. In this work, we(More)
This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic(More)
Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic(More)
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout(More)