Yiping Cui

Learn More
Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the(More)
Mn-doped nanocrystals (NCs) have attracted much attention for their excellent properties. In our work, colloidal Mn-doped NCs with high quantum yield are synthesized and enveloped with silica hydrosol. The blend of NCs and silica hydrosol is coated on a blue light-emitting diode (LED), and the appropriate thickness of the NC film is found. White light is(More)
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO(2) nanoparticles. Two kinds of silver-silica core-shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing(More)
Metal-enhanced fluorescence of semiconductor nanocrystals (NCs) is investigated. There is very little attention paid to the metal-enhanced fluorescence in aqueous solution, which has great potential applications in bioscience. In this work, we directly observe metal-enhanced fluorescence of CdTe NC solution by simply mixing CdTe NCs and Au nanoparticles,(More)
Controllable doping is an effective way of tuning the properties of semiconductor nanocrystals (NCs). In this work, a simple strategy of fast doping Cu ions into ZnSe NCs under ambient conditions was proposed. The principle of doping is based on hydrazine (N2H4) promoted cation exchange reaction. By direct addition of Cu ion stock solution into the(More)
Using ZnSe nanocrystals (NCs) as starting material, Ag-doped or Cu-doped ZnCdSe ternary NCs were prepared by hydrazine-promoted sequential cation exchange in aqueous media. The composition of the NCs can be flexibly controlled by varying the amount of intermediate Ag or Cu cation addition, thus changing the emission of the ternary NCs while preserving the(More)
Purification is a separated post-treatment step after the synthesis of nanocrystals (NCs) in order to exclude excess ligands and monomers in NC solution. The common purification process involves many manipulations, such as concentrating, addition of anti-solvents and centrifugation, which are troublesome and time consuming. In this work, we originally(More)
A novel gap-plasmon-tunable Ag bilayer nanoparticle film for immunoassays is demonstrated. Different from a traditional Ag monolayer nanoparticle film, a desired number of polyelectrolyte (PEL) layers are deposited on the nanoparticles before the self-assembly of a second Ag nanoparticle layer. Interestingly, by controlling the number of the PEL(More)
pH-sensitive photoluminescence (PL) is an important property of aqueous nanocrystals (NCs) towards NCs-based intelligent applications. Previous works mainly focused on the effect of pH during NC growth process on PL of the aqueous NCs. The effect of pH during application process on PL of as-prepared NCs is still not fully understood. In this work, we(More)
A tumor cell targeting surface-enhanced Raman scattering (SERS) probe has been successfully synthesized by using p-mercaptobenzoic acid (pMBA) as both the SERS reporter and the conjugation agent for attaching transferrin molecules, which shows experimentally the targeting ability for transferrin receptor-overexpressed HeLa cells and exhibits strong SERS(More)