Learn More
An immunoassay based on surface enhanced Raman scattering (SERS) has been developed using immuno-gold/silver core-shell nanorods with a high sensitivity. The features of these nanoparticles were characterized by UV-vis extinction spectra, TEM images, EDX analyses and SERS spectra. It was found that the obtained gold/silver core-shell nanorods showed a much(More)
We demonstrated a remote-controlled DNA release strategy, in which irradiation of nanoparticles with an alternating electromagnetic field (AMF) results in DNA release on demand. The method we developed used 6-carboxyfluorescein (FAM)-labeled diblock DNA to modify Fe3O4@Au nanoparticles (NPs) through the affinity of adenine with the surfaces of the NPs. The(More)
Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the(More)
We report a dual mode cancer cell targeting probe based on CdTe quantum dots (QDs) conjugated, silica coated Au@Ag core-shell nanorods (Au@Ag NRs), which can generate both surface enhanced Raman scattering (SERS) and fluorescence signals. In such a probe, folic acid (FA) is used as a targeting ligand for folate receptors (FRs) overexpressed cancer cells. To(More)
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO(2) nanoparticles. Two kinds of silver-silica core-shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing(More)
Metal-enhanced fluorescence of semiconductor nanocrystals (NCs) is investigated. There is very little attention paid to the metal-enhanced fluorescence in aqueous solution, which has great potential applications in bioscience. In this work, we directly observe metal-enhanced fluorescence of CdTe NC solution by simply mixing CdTe NCs and Au nanoparticles,(More)
A pH and thermo dual-controllable composite structure was developed as a triggerable drug delivery carrier. In such a drug carrier, a mesoporous silica nanoparticle (MSN) acts as the drug loading core, while a layer of copolymer-lipid serves as the dual-responsive gating shell. Specifically, the copolymer-lipid bilayer consists of natural phospholipids (soy(More)
Controllable doping is an effective way of tuning the properties of semiconductor nanocrystals (NCs). In this work, a simple strategy of fast doping Cu ions into ZnSe NCs under ambient conditions was proposed. The principle of doping is based on hydrazine (N2H4) promoted cation exchange reaction. By direct addition of Cu ion stock solution into the(More)
We report an intracellular pH sensor based on surface enhanced Raman scattering (SERS) using the hydrochloric acid (HCl) treated gold nanorods (GNRs) as the SERS substrates and p-aminothiophenol (pATP) as the Raman reporter. Using the HCl treated GNRs previously reported by us, the biocompatibility and the SERS performance of GNRs have been greatly(More)
A graphene quantum dot-based FRET system is demonstrated for nuclear-targeted drug delivery, which allows for real-time monitoring of the drug release process through FRET signals. In such a system, graphene quantum dots (GQDs) simultaneously serve as the carriers of drugs and donors of FRET pairs. Additionally, a peptide TAT as the nuclear localization(More)