Learn More
The human genome encodes many long non-coding RNAs (lncRNAs). However, their biological functions, molecular mechanisms, and the prognostic value associated with pancreatic ductal adenocarcinoma (PDAC) remain to be elucidated. Here, we identify a fundamental role for the lncRNA HOXA transcript at the distal tip (HOTTIP) in the progression and(More)
We propose a machine learning approach to characterize the functional status of astrocytes, the most abundant cells in human brain, based on time-lapse Ca2+ imaging data. The interest in analyzing astrocyte Ca2+ dynamics is evoked by recent discoveries that astrocytes play proactive regulatory roles in neural information processing, and is enabled by recent(More)
Recent discoveries that astrocytes exert proactive regulatory effects on neural information processing and that they are deeply involved in normal brain development and disease pathology have stimulated broad interest in understanding astrocyte functional roles in brain circuit. Measuring astrocyte functional status is now technically feasible, due to(More)
Although Duchenne muscular dystrophy (DMD), the most common single-gene lethal disorder, is caused by a homogeneous biochemical defect in all patients, substantial patient-patient variety in disease progression is observed. The loss of ambulation (LoA) is a functional milestone of DMD progression and the age at LoA is often used as an indication of disease(More)
Our previous study demonstrated that long non-coding RNA (lncRNA) HOTTIP was maximally expressed in PDAC, and promoted cancer cell progression and epithelial to mesenchymal transition (EMT). Numerous studies indicated that lncRNAs or EMT supported cancer stem cells. However, the role of HOTTIP in pancreatic cancer stem cells (PCSCs) remains unclear. Here,(More)
  • 1