Yinghong Guan

Learn More
The Fenton system generates reactive species with high oxidation potential such as hydroxyl radicals (HO(•)) or ferryl via the reaction between Fe (II) and H₂O₂. However, a number of drawbacks limit its widespread application including the accumulation of Fe (III) and the narrow pH range limits, etc. The aim of this study is to propose a much more efficient(More)
Aqueous suspensions of Microcystis aeruginosa were preoxidized with either ozone or permanganate and then subjected to chlorination under conditions simulating drinking water purification. The impacts of the two oxidants on the algal cells and on the subsequent production of dissolved organic matter and disinfection byproducts were investigated.(More)
Most halogenated organic compounds (HOCs) are toxic and persistent, and their efficient destruction is currently a challenge. Here, we proposed a sulfite/UV (253.7 nm) process to eliminate HOCs. Monochloroacetic acid (MCAA) was selected as the target compound and was degraded rapidly in the sulfite/UV process. The degradation kinetics were accelerated(More)
The reaction between ferrous iron (Fe(II)) with peroxymonosulfate (PMS) generates reactive oxidants capable of degrading refractory organic contaminants. However, the slow transformation from ferric iron (Fe(III)) back to Fe(II) limits its widespread application. Here, we added hydroxylamine (HA), a common reducing agent, into Fe(II)/PMS process to(More)
This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate(More)
  • 1