Learn More
Layered semiconductor photocatalysts have been found to exhibit promising performance levels, probably linked to their interlayer framework that facilitates separation of charge carriers and the reduction/oxidation reactions. Layered titanates, however, generally demonstrate activities under UV irradiation, and therein lies the strong desire to extend their(More)
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting(More)
Separation of photo-generated charges has played a crucial role in controlling the actual performance of a photocatalytic system. Here we have successfully fabricated g-C3N4/TiO2-B nanowire/tube heterostructures through facile urea degradation reactions. Owing to the effective separation of photo-generated charges associated with the type-II band alignment(More)
Modification of prototype perovskite compound SrTiO3 by introducing foreign elements has been an appealing means to endow this wide band gap semiconductor with visible light responses. Here we systematically investigated a series of Sr1-xBixTi1-xCrxO3 solid solution compounds prepared by two different synthetic routes, namely, solid state reactions and the(More)
Tantalum nitride (Ta3 N5 ) highlights an intriguing paradigm for converting solar energy into chemical fuels. However, its photocatalytic properties are strongly governed by various intrinsic/extrinsic defects. In this work, we successfully prepared a series of Mg-doped mesoporous Ta3 N5 using a simple method. The photocatalytic and photoelectrochemical(More)
  • 1