Ying-Tsen Tung

Learn More
Autophagy is a major protein degradation pathway that is essential for stress-induced and constitutive protein turnover. Accumulated evidence has demonstrated that amyloid-β (Aβ) protein can be generated in autophagic vacuoles, promoting its extracellular deposition in neuritic plaques as the pathological hallmark of Alzheimer’s disease (AD). The molecular(More)
Mammalian p62/sequestosome-1 protein binds to both LC3, the mammalian homologue of yeast Atg8, and polyubiquitinated cargo proteins destined to undergo autophagy-mediated degradation. We previously identified a cargo receptor-binding domain in Atg8 that is essential for its interaction with the cargo receptor Atg19 in selective autophagic processes in(More)
Mutations in presenilin-1 (PS1) are tightly associated with early-onset familial Alzheimer’s disease (FAD), which is characterized by extracellular amyloid plaques and the accumulation of intracellular Tau. In addition to being the catalytic subunit of γ-secretase, PS1 has been shown to regulate diverse cellular functions independent of its proteolytic(More)
Previous studies have demonstrated that the ERK MAPK acts as a negative regulator of gamma-secretase. Here, we demonstrate that the activation of ERK MAPK pathway by sodium selenite can inhibit endogenous gamma-secretase activity. Consistently, the gamma-secretase-mediated production of amyloid-beta (Abeta) was dramatically attenuated by sodium selenite in(More)
Motor neurons (MNs) are unique because they project their axons outside of the CNS to innervate the peripheral muscles. Limb-innervating lateral motor column MNs (LMC-MNs) travel substantially to innervate distal limb mesenchyme. How LMC-MNs fine-tune the balance between survival and apoptosis while wiring the sensorimotor circuit en route remains unclear.(More)
  • 1