Learn More
FIV is a significant pathogen in the cat and is, in addition, the smallest available natural model for the study of lentivirus infections. Although divergent at the amino acid level, the cat lentivirus has an abundance of structural and pathophysiological commonalities with HIV and thus serves well as a model for development of intervention strategies(More)
Building from the results of a computational screen of a range of triazole-containing compounds for binding efficiency to human immunodeficiency virus type 1 protease (HIV-1-Pr), a novel series of potent inhibitors has been developed. The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), which provides ready access to(More)
Given the ubiquitous nature of the peptide linkage in biological molecules, replacement of the amide bond with isosteres in potential drug candidates has been a continual goal of many laboratories. Successful replacements will provide improved stability, lipophilicity, and absorption. Many surrogates have been introduced already, [1] yet the synthesis of(More)
Feline immunodeficiency virus (FIV) is an important viral pathogen worldwide in the domestic cat, which is the smallest animal model for the study of natural lentivirus infection. Thus, understanding the molecular mechanisms by which FIV carries out its life cycle and causes an acquired immune deficiency syndrome (AIDS) in the cat is of high priority. FIV(More)
Treatment with HIV-1 protease inhibitors, a component of highly active antiretroviral therapy (HAART), often results in viral resistance. Structural and biochemical characterization of a 6X protease mutant arising from in vitro selection with compound 1, a C 2-symmetric diol protease inhibitor, has been previously described. We now show that compound 2, a(More)
We used feline immunodeficiency virus (FIV) protease (PR) as a mutational framework to define determinants for the observed substrate and inhibitor specificity distinctions between FIV and human immunodeficiency virus (HIV) PRs. Multiple-substitution mutants were constructed by replacing the residues in and around the active site of FIV PR with the(More)
We have obtained the 1.7 Å crystal structure of FIV protease (PR) in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR). The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and(More)
The fragment indole-6-carboxylic acid (1F1), previously identified as a flap site binder in a fragment-based screen against HIV protease (PR), has been cocrystallized with pepstatin-inhibited PR and with apo-PR. Another fragment, 3-indolepropionic acid (1F1-N), predicted by AutoDock calculations and confirmed in a novel inhibition of nucleation(More)