Ying-Chiao Wang

Learn More
To replace high-temperature sintered scaffold materials in conventional CH3NH3PbI3-based solar cells, this study demonstrates a new device structure of a bulk intermixing (BI)-type CH3NH3PbI3/TiO2 nanorod (NR) hybrid solar cell, where dispersed TiO2 NRs from chemical synthesis are intermixed with the perovskite absorbing layer to form a BI-type(More)
The design of active and stable semiconducting composites with enhanced photoresponse from visible light to near infrared (NIR) is a key to improve solar energy harvesting for photolysis of water in photoelectrochemical cell. In this study, we prepared earth abundant semiconducting composites consisting of iron pyrite and Titanium oxide as a photoanode(More)
Dye-sensitized solar cells (DSSCs) present low-cost alternatives to conventional wafer-based inorganic solar cells and have remarkable power conversion efficiency. To further enhance performance, we propose a new DSSC architecture with a novel dual-functional polymer interlayer that prevents charge recombination and facilitates ionic conduction, as well as(More)
The presence of the PbI2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic(More)
  • 1