Yin-zheng Wang

Learn More
Accurate classification systems based on evolution are imperative for biological investigations. The recent explosion of molecular phylogenetics has resulted in a much improved classification of angiosperms. More than five phylogenetic lineages have been recognized from Scrophulariaceae sensu lato since the family was determined to be polyphyletic; however,(More)
Members of the CYCLOIDEA2 (CYC2) clade of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF transcription factor genes are widely involved in controlling floral zygomorphy, a key innovation in angiosperm evolution, depending on their persistently asymmetric expression in the corresponding floral domains. However, it is unclear how this asymmetric expression is(More)
Loss of seed dispersal is a key agronomical trait targeted by ancient human selection and has been regarded as a milestone of crop domestication. In this study, in the legume crop soybean Glycine max (L.) Merr. which provides vegetable oils and proteins for humans, we show that the key cellular feature of the shattering-resistant trait lies in the(More)
CYCLOIDIEA (CYC) and its homologues have been studied intensively in the model organism Antirrhinum majus and related species regarding their function in controlling floral dorsoventral (adaxial–abaxial) asymmetry, including aborting the adaxial and lateral stamens. This raises the question whether the same mechanism underlies the great morphological(More)
The shift from zygomorphy to actinomorphy has been intensively studied in molecular genetic model organisms. However, it is still a key challenge to explain the great morphological diversity of derived actinomorphy in angiosperms, since different underlying mechanisms may be responsible for similar external morphologies. Bournea (Gesneriaceae) is of(More)
Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission(More)
The 'didymocarpoid Gesneriaceae' (traditional subfam. Cyrtandroideae excluding Epithemateae) are the largest group of Old World Gesneriaceae, comprising 85 genera and 1800 species. We attempt to resolve their hitherto poorly understood generic relationships using three molecular markers on 145 species, of which 128 belong to didymocarpoid Gesneriaceae. Our(More)
ECE-CYC2 clade genes known in patterning floral dorsoventral asymmetry (zygomorphy) in Antirrhinum majus are conserved in the dorsal identity function including arresting the dorsal stamen. However, it remains uncertain whether the same mechanism underlies abortion of the ventral stamens, an important morphological trait related to evolution and(More)
• With growing concerns over serious ecological problems, a particular challenge is to reveal the complex mechanisms underlying rapid expansion of invasive species. Ageratina adenophora is of particular interest in addressing this question. • We used geographic information systems and logistic regression to identify the geographic and environmental factors(More)
Ruta, which belongs to tribe Ruteae, is the type genus of the subfamily Rutoideae and the family Rutaceae. Molecular systematic studies have shown that the genera in Ruteae are closer related to Aurantioideae than to most other genera of Rutoideae, some of the genera traditionally placed in Ruteae have been shown to be nested within the Aurantioideae clade,(More)