Learn More
Gibberella zeae, a major cause of cereal scab, can be divided into two chemotypes based on production of the 8-ketotrichothecenes deoxynivalenol (DON) and nivalenol (NIV). We cloned and sequenced a Tri13 homolog from each chemotype. The Tri13 from a NIV chemotype strain (88-1) is located in the trichothecene gene cluster and carries an open reading frame(More)
The sucrose nonfermenting 1 (SNF1) protein kinase of yeast plays a central role in the transcription of glucose-repressible genes in response to glucose starvation. In this study, we deleted an ortholog of SNF1 from Gibberella zeae to characterize its functions by using a gene replacement strategy. The mycelial growth of deletion mutants (DeltaGzSNF1) was(More)
Fusarium head blight caused by Gibberella zeae is a prominent disease of cereal crops that poses serious human health concerns due to the contamination of grains with mycotoxins. In this study, we deleted an orthologue of areA, which is a global nitrogen regulator in filamentous fungi, to characterize its functions in G. zeae. The areA deletion resulted in(More)
We previously reported that apicidin arrested human cancer cell growth through selective induction of p21(WAF1/Cip1). In this study, the apoptotic potential of apicidin and its mechanism in HL60 cells was investigated. Treatment of HL60 cells with apicidin caused a decrease in viable cell number in a dose-dependent manner and an increase in DNA(More)
Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion(More)
Fusarium graminearum is an important fungal pathogen of cereal crops and produces mycotoxins, such as the trichothecenes nivalenol and deoxynivalenol. This species may be subdivided into a series of genetic lineages or phylogenetic species. We identified strains of F. graminearum from the Republic of Korea to lineage, tested their ability to produce(More)
Gibberella zeae (anamorph: Fusarium graminearum), a self-fertile ascomycete, is an important pathogen of cereal crops. Here, we have focused on the genes specifically controlled by the mating type (MAT) locus, a master regulator of sexual developmental process in G. zeae. To identify these genes, we employed suppression subtractive hybridization between a(More)
Production of the carcinogenic mycotoxins fumonisins has been reported in several Fusarium species, most of which are members of the Gibberella fujikuroi (Gf) complex. In this study, we examined 15 Fusarium species in the Gf complex and 12 other species for fumonisin production and the presence of fumonisin biosynthetic genes (FUM). Among the species within(More)
Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in(More)
Regulators of G protein signaling (RGS) proteins make up a highly diverse and multifunctional protein family that plays a critical role in controlling heterotrimeric G protein signaling. In this study, seven RGS genes (FgFlbA, FgFlbB, FgRgsA, FgRgsB, FgRgsB2, FgRgsC, and FgGprK) were functionally characterized in the plant pathogenic fungus, Gibberella(More)