Yin-Ping Niu

Learn More
The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation,(More)
The synaptic response waveform, which determines signal integration properties in the brain, depends on the spatiotemporal profile of neurotransmitter in the synaptic cleft. Here, we show that electrophoretic interactions between AMPA receptor-mediated excitatory currents and negatively charged glutamate molecules accelerate the clearance of glutamate from(More)
NMDA receptor dependent synaptic plasticity was examined in hippocampal slices using a novel pharmacological pairing procedure. Field excitatory postsynaptic potentials (EPSPs) were recorded from the CA1 area of slices maintained in a low Mg(2+) solution using a stimulus rate of 0.1-0.2 Hz. The NMDA receptor antagonist 2-amino-5-phosphonovalerate (AP5) was(More)
  • 1