Learn More
This paper is a comparative study of feature selection methods in statistical learning of text categorization The focus is on aggres sive dimensionality reduction Five meth ods were evaluated including term selection based on document frequency DF informa tion gain IG mutual information MI a test CHI and term strength TS We found IG and CHI most e ective in(More)
Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories recently made available by Reuters, Ltd. for research purposes. Use of this data for research on text categorization requires a detailed understanding of the real world constraints under which the data was produced. Drawing on interviews with Reuters personnel(More)
This paper reports a controlled study with statistical signi cance tests on ve text categorization methods: the Support Vector Machines (SVM), a k-Nearest Neighbor (kNN) classi er, a neural network (NNet) approach, the Linear Leastsquares Fit (LLSF) mapping and a Naive Bayes (NB) classier. We focus on the robustness of these methods in dealing with a skewed(More)
Topic Detection and Tracking (TDT) is a DARPA-sponsored initiative to investigate the state of the art in finding and following new events in a stream of broadcast news stories. The TDT problem consists of three major tasks: (1) segmenting a stream of data, especially recognized speech, into distinct stories; (2) identifying those news stories that are the(More)
This paper investigates the use and extension of text retrieval and clustering techniques for event detection. The task is to automatically detect novel events from a temporally-ordered stream of news stories, either retrospectively or as the stories arrive. We applied hierarchical and non-hierarchical document clustering algorithms to a corpus of 15,836(More)
Expert Network (ExpNet) is our new approach to automatic categorization and retrieval of natural language texts. We use a training set of texts with expert-assigned categories to construct a network which approximately reflects the conditional probabilities of categories given a text. The input nodes of the network are words in the training texts, the nodes(More)
Very large-scale classification taxonomies typically have hundreds of thousands of categories, deep hierarchies, and skewed category distribution over documents. However, it is still an open question whether the state-of-the-art technologies in automated text categorization can scale to (and perform well on) such large taxonomies. In this paper, we report(More)
A unified model for text categorization and text retrieval is introduced. We use a training set of manually categorized documents to learn word-category associations, and use these associations to predict the categories of arbitrary documents. Similarly, we use a training set of queries and their related documents to obtain empirical associations between(More)
A large set of email messages, the Enron corpus, was made public during the legal investigation concerning the Enron corporation. This dataset, along with a thorough explanation of its origin, is available at http://www-2.cs.cmu.edu/~enron/. This paper provides a brief introduction and analysis of the dataset. The raw Enron corpus contains 619,446 messages(More)